Please wait a minute...
E-mail Alert Rss
 
物探与化探  2025, Vol. 49 Issue (2): 385-393    DOI: 10.11720/wtyht.2025.1191
  方法研究信息处理仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于深度学习的二维斜率层析反演模型误差校正方法
葛大明()
中国石化胜利油田分公司 物探研究院,山东 东营 257022
A deep learning-based method for error correction of 2D slope tomography-based inversion models
GE Da-Ming()
Geophysical Research Institute, Shengli Oilfield Company, SINOPEC, Dongying 257022, China
全文: PDF(3039 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

斜率层析成像是一种利用局部相干的地震反射波走时和斜率,反演地下介质宏观速度分布的方法,在地质构造复杂工区,斜率层析反演模型的误差较大。为此,本文提出一种基于深度学习的斜率层析反演模型误差校正方法。该方法以斜率层析反演模型作为神经网络输入,对应的理论模型作为标签,通过训练神经网络,建立从斜率层析反演模型到理论模型的非线性映射。为确保训练后的神经网络适用于实测地震资料,基于实测资料反演模型和偏移剖面生成训练样本。理论模型合成数据测试验证了所提方法的正确性和有效性。将该方法应用于滩浅海2D实测地震资料,获得了更高精度的速度模型和更高质量的深度偏移成像剖面。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
葛大明
关键词 斜率层析成像深度学习误差校正速度模型神经网络    
Abstract

Slope tomography is a method to estimate subsurface velocity macromodels from the slopes and traveltimes of local coherent reflection events. In geologically complex areas, the macromodels obtained from slope tomography tend to yield larger errors. To address this issue, this study proposed a method for error correction of the models using deep learning. Specifically, with macromodels determined using slope tomography-based inversion serving as input and corresponding theoretical models as labels, a neural network was trained, yielding a nonlinear mapping from the slope tomography-derived macromodel to the corresponding theoretical model. To ensure that the trained neural network was applicable to measured seismic data, the training samples were generated from the inversion model and migration profiles of measured seismic data. Tests based on the data synthesized using the theoratical model validated the accuracy and effectiveness of the proposed method. The proposed method was then applied to the 2D measured seismic data from beaches and shallow seas, yielding velocity models with elevated precision and depth migration imaging profiles with high quality.

Key wordsslope tomography imaging    deep learning    error correction    velocity model    neural network
收稿日期: 2024-04-26      修回日期: 2024-11-10      出版日期: 2025-04-20
ZTFLH:  P631.4  
基金资助:中国石化重大科技项目(P22141)
作者简介: 葛大明(1978-), 男, 硕士, 高级工程师,主要从事地震资料处理生产及方法研究工作。Email:gedaming.slyt@sinopec.com
引用本文:   
葛大明. 基于深度学习的二维斜率层析反演模型误差校正方法[J]. 物探与化探, 2025, 49(2): 385-393.
GE Da-Ming. A deep learning-based method for error correction of 2D slope tomography-based inversion models. Geophysical and Geochemical Exploration, 2025, 49(2): 385-393.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2025.1191      或      https://www.wutanyuhuatan.com/CN/Y2025/V49/I2/385
Fig.1  本文采用的U-net神经网络结构
Fig.2  层析反演模型误差校正流程
Fig.3  测线观测系统
Fig.4  实测资料反演模型(a)和深度偏移剖面(b)
Fig.5  构建的训练样本
Fig.6  5个有代表性的训练样本
Fig.7  神经网络训练的目标函数值
Fig.8  测试样本中所有离散网格单元的速度误差分布
Fig.9  5个有代表性的测试样本
Fig.10  实测资料的网络预测模型(a)及其对应的深度偏移剖面(b)
Fig.11  不同距离、不同模型计算的共成像点道集
[1] Billette F, Lambaré G. Velocity macro-model estimation from seismic reflection data by stereotomography[J]. Geophysical Journal International, 1998, 135(2):671-690.
[2] Jin C K, Zhang J Z. Stereotomography of seismic data acquired on undulant topography[J]. Geophysics, 2018, 83(4):U35-U41.
[3] Sambolian S, Operto S, Ribodetti A, et al. Parsimonious slope tomography based on eikonal solvers and the adjoint-state method[J]. Geophysical Journal International, 2019, 218(1):456-478.
doi: 10.1093/gji/ggz150
[4] 金昌昆, 张建中. 地震立体层析成像的实现方法及效果分析[J]. CT理论与应用研究, 2014, 23(6):939-950.
[4] Jin C K, Zhang J Z. Implementation methods of stereotomography and analysis of influence factors on its results[J]. Computerized Tomography Theory and Applications, 2014, 23(6):939-950.
[5] 叶云飞, 孙建国, 张益明, 等. 基于立体层析反演的低频模型构建在深水区储层反演中的应用:以南海深水W构造为例[J]. 吉林大学学报:地球科学版, 2018, 48(4):1253-1259.
[5] Ye Y F, Sun J G, Zhang Y M, et al. Construction of low-frequency model with three-dimensional tomographic velocity inversion and application in deep-water bock W of South China Sea[J]. Journal of Jilin University:Earth Science Edition, 2018, 48(4):1253-1259.
[6] Liu J, Zhang J Z. Joint inversion of seismic slopes,traveltimes and gravity anomaly data based on structural similarity[J]. Geophysical Journal International, 2022, 229(1):390-407.
[7] Yang H C, He W L, Ma F, et al. Slope tomography dynamically weighted according to the locations of the reflection points[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62:5905311.
[8] 熊凯, 杨锴, 邢逢源, 等. 联合结构张量与运动学反偏移的立体层析数据空间提取与反演策略研究Ⅱ:实践[J]. 石油物探, 2018, 57(2):254-261,273.
doi: 10.3969/j.issn.1000-1441.2018.02.011
[8] Xiong K, Yang K, Xing F Y, et al. Inversion strategy and data space extraction for stereo-tomography based on a combination of structure tensor and kinematic demigration.Ⅱ:Practice[J]. Geophysical Prospecting for Petroleum, 2018, 57(2):254-261,273.
doi: 10.3969/j.issn.1000-1441.2018.02.011
[9] 张力起, 杨锴, 邢逢源, 等. 地层格架正则化约束下的二维立体层析反演[J]. 地球物理学报, 2019, 62(2):634-647.
doi: 10.6038/cjg2019L0568
[9] Zhang L Q, Yang K, Xing F Y, et al. 2D stereo-tomography inversion constrained by regularization of stratum framework[J]. Chinese Journal of Geophysics, 2019, 62(2):634-647.
[10] Costa J C, da Silva F J, Gomes E N, et al. Regularization in slope tomography[J]. Geophysics, 2008, 73(5):VE39-VE47.
[11] Guillaume P, Reinier M, Lambaré G, et al. Dip constrained non-linear slope tomography[C]// SEG Technical Program Expanded Abstracts 2013,Society of Exploration Geophysicists, 2013:4811-4815.
[12] Kurose T, Yamanaka H. Joint inversion of receiver function and surface-wave phase velocity for estimation of shear-wave velocity of sedimentary layers[J]. Exploration Geophysics, 2006, 37(1):93-101.
[13] 张佩, 宋晓东, 熊奥林. 重震联合反演方法及其应用进展[J]. 地球物理学进展, 2019, 34(5):1818-1825.
[13] Zhang P, Song X D, Xiong A L. Advancement of joint inversion of gravity and seismic data and its application[J]. Progress in Geophysics, 2019, 34(5):1818-1825.
[14] 相鹏, 王金铎, 谭绍泉, 等. 一种变密度—速度关系的重力与地震同步联合反演方法[J]. 石油地球物理勘探, 2020, 55(3):686-693,474.
[14] Xiang P, Wang J D, Tan S Q, et al. Simultaneous and joint inversion of gravity and seismic data based on variable density-velocity relation[J]. Oil Geophysical Prospecting, 2020, 55(3):686-693,474.
[15] 刘洁, 张建中. 重震联合中速度—密度耦合研究综述[J]. 地球物理学进展, 2020, 35(3):976-986.
[15] Liu J, Zhang J Z. Review of velocity-density coupling in joint inversion of seismic and gravity data[J]. Progress in Geophysics, 2020, 35(3):976-986.
[16] Yang H C, Li P, Ma F, et al. Building near-surface velocity models by integrating the first-arrival traveltime tomography and supervised deep learning[J]. Geophysical Journal International, 2023, 235(1):326-341.
[17] Araya-Polo M, Jennings J, Adler A, et al. Deep-learning tomography[J]. The Leading Edge, 2018, 37(1):58-66.
[18] Araya-Polo M, Farris S, Florez M. Deep learning-driven velocity model building workflow[J]. The Leading Edge, 2019, 38(11):872a1-872a9.
[19] Wang W L, Ma J W. Velocity model building in a crosswell acquisition geometry with image-trained artificial neural networks[J]. Geophysics, 2020, 85(2):U31-U46.
[20] Li S C, Liu B, Ren Y X, et al. Deep-learning inversion of seismic data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(3):2135-2149.
[21] Liu B, Yang S L, Ren Y X, et al. Deep-learning seismic full-waveform inversion for realistic structural models[J]. Geophysics, 2021, 86(1):R31-R44.
[22] Kazei V, Ovcharenko O, Alkhalifah T. Velocity model building by deep learning:From general synthetics to field data application[C]// SEG Technical Program Expanded Abstracts 2020,Virtual,Society of Exploration Geophysicists, 2020:1561-1565.
[23] Fabien-Ouellet G, Sarkar R. Seismic velocity estimation:A deep recurrent neural-network approach[J]. Geophysics, 2020, 85(1):U21-U29.
doi: 10.1190/GEO2018-0786.1
[24] Geng Z C, Zhao Z Y, Shi Y Z, et al. Deep learning for velocity model building with common-image gather volumes[J]. Geophysical Journal International, 2021, 228(2):1054-1070.
[25] Muller A P O, Bom C R, Costa J C, et al. Deep-Tomography:Iterative velocity model building with deep learning[J]. Geophysical Journal International, 2022, 232(2):975-989.
[26] Tavakoli F B, Operto S, Ribodetti A, et al. Slope tomography based on eikonal solvers and the adjoint-state method[J]. Geophysical Journal International, 2017, 209(3):1629-1647.
[27] Dai Y H, Yuan Y. A nonlinear conjugate gradient method with a strong global convergence property[J]. SIAM Journal on Optimization, 1999, 10(1):177-182.
[28] Nocedal J, Wright S J. Numerical optimization,2th ed[M]. New York,NY,USA: Springer, 2006.
[29] 张岩, 孟德聪, 宋利伟, 等. 基于特征强化U-Net的地震速度反演方法[J]. 石油地球物理勘探, 2024, 59(2):185-194.
[29] Zhang Y, Meng D C, Song L W, et al. Seismic velocity inversion method based on feature enhancement U-Net[J]. Oil Geophysical Prospecting, 2024, 59(2):185-194.
[30] Yang F S, Ma J W. Deep-learning inversion:A next-generation seismic velocity model building method[J]. Geophysics, 2019, 84(4):R583-R599.
[31] 许祥, 邹志辉, 韩明亮, 等. 联合地震初至走时与早至波形的深度学习速度建模[J]. 地球物理学报, 2023, 66(12):5107-5122.
[31] Xu X, Zou Z H, Han M L, et al. Deep-learning velocity model building by jointly using seismic first arrivals and early-arrival waveforms[J]. Chinese Journal of Geophysics, 2023, 66(12):5107-5122.
[32] 杨庭威, 曹丹平, 杜南樵, 等. 基于深度学习的接收函数横波速度预测[J]. 地球物理学报, 2022, 65(1):214-226.
doi: 10.6038/cjg2022P0025
[32] Yang T W, Cao D P, Du N Q, et al. Prediction of shear-wave velocity using receiver functions based on the deep learning method[J]. Chinese Journal of Geophysics, 2022, 65(1):214-226.
[1] 杨海明, 姚卫星, 唐塑, 潘展超, 关力伟. 基于BP神经网络的时域激电谱Cole-Cole模型参数反演及应用[J]. 物探与化探, 2025, 49(2): 433-440.
[2] 张猛. 地震资料处理中油井抽油机噪声干扰智能检测与压制方法[J]. 物探与化探, 2025, 49(2): 378-384.
[3] 李博, 李长伟, 罗润林, 吕玉增, 王占. 基于VMD-LSTM对大地电磁信号进行噪声检测和预测重构[J]. 物探与化探, 2025, 49(1): 100-117.
[4] 单博, 邢宇鑫, 张繁昌, 李志伟, 陈默. 基于二次编解码网络的适应性叠前反演方法[J]. 物探与化探, 2025, 49(1): 158-165.
[5] 赵丽芳, 喻思羽, 李少华. 基于深度学习的变差函数自动拟合方法研究[J]. 物探与化探, 2024, 48(5): 1359-1367.
[6] 赵军, 冉琦, 朱博华, 李洋, 梁舒瑗, 常健强. 基于前馈神经网络井控多属性融合的断裂识别方法[J]. 物探与化探, 2024, 48(4): 1045-1053.
[7] 张敏, 许一卓, 易继东. 基于可伸缩型注意力机制的神经网络地震数据去噪方法[J]. 物探与化探, 2024, 48(4): 1065-1075.
[8] 姚禹, 张志厚. 基于改进DenseNet的大地电磁智能反演[J]. 物探与化探, 2024, 48(3): 759-767.
[9] 杨凯, 刘诚, 贺景龙, 李含, 姚川. 基于人工神经网络的大地电磁时序分类研究[J]. 物探与化探, 2024, 48(2): 498-507.
[10] 郑孝诚, 张明华, 任伟. 卷积神经网络在山东金矿勘查预测中的应用[J]. 物探与化探, 2023, 47(6): 1433-1440.
[11] 刘湘浩, 刘四新, 胡铭奇, 孙中秋, 王千. 基于OMAGA-BP算法的高密度电阻率法反演研究[J]. 物探与化探, 2023, 47(6): 1519-1527.
[12] 王康, 刘彩云, 熊杰, 王永昌, 胡焕发, 康佳帅. 基于全卷积残差收缩网络的地震波阻抗反演[J]. 物探与化探, 2023, 47(6): 1538-1546.
[13] 游希然, 张继锋, 石宇. 基于人工神经网络的瞬变电磁成像方法[J]. 物探与化探, 2023, 47(5): 1206-1214.
[14] 周慧, 孙成禹, 刘英昌, 蔡瑞乾. 基于DC-UNet卷积神经网络的强噪声压制方法[J]. 物探与化探, 2023, 47(5): 1288-1297.
[15] 吴嵩, 宁晓斌, 杨庭伟, 姜洪亮, 卢超波, 苏煜堤. 基于神经网络的探地雷达数据去噪[J]. 物探与化探, 2023, 47(5): 1298-1306.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com