Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (2): 424-432    DOI: 10.11720/wtyht.2022.1286
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
带约束的多辐射场源半航空瞬变电磁一维自适应正则化反演方法
张莹莹()
新疆大学 地质与矿业工程学院,新疆 乌鲁木齐 830047
A constrained and adaptive regularized 1D inversion method of multi-source semi-airborne transient electromagnetics
ZHANG Ying-Ying()
School of Geological and Mining Engineering, Xinjiang University, Urumqi 830047, China
全文: PDF(1499 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

基于多辐射场源半航空瞬变电磁法,研究了一种带约束的适用于垂直分量的一维自适应正则化反演算法。该算法在Occam反演的基础上,采用CMD自适应调节方案改进了拉格朗日乘子的处理方式,利用自然边界条件和模型修正量可行下降方向法对反演过程进行约束,在提高反演过程计算效率的同时,保证反演结果的稳定性和可靠性。层状模型试算结果表明,该算法可以通过较少的迭代次数和计算时间获得较好的反演结果,HK型模型的反演结果证实该算法对层数更多的复杂地电构造仍具有较好的适应性和有效性;含噪数据的反演结果表明即使包含噪声,不超过10次迭代即可获得满意的结果,反演算法具有较好的稳定收敛性,验证了该算法进行多辐射场源半航空瞬变电磁资料解释的可行性和有效性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张莹莹
关键词 多辐射场源半航空瞬变电磁法自适应正则化一维反演    
Abstract

This study proposed a constrained and adaptive regularized 1D scheme for the vertical component inversion of semi-airborne transient electromagnetics. Based on the Occam inversion, the CMD adaptive regulation scheme was used to calculate the Lagrange multiplier. Meanwhile, the feasible descent direction method with natural boundary conditions and model correction was introduced to constrain the inversion process. This combined algorithm can both improve the computational efficiency of the inversion process and guarantee the stability and reliability of inversion results. The results of layered models show that this algorithm can obtain ideal inversion results with a short iteration and computation time. Owing to the shielding effect of conductive layers and the insensitivity to resistive layers of transient electromagnetics, the inversion results of the HK model can only get the average resistivity of underlying layers. The results of the HK model verify the adaptability and effectiveness of this algorithm proposed in this study for complex geoelectric structures. A satisfactory inversion result was achieved from noise-included signals through no more than ten iterations. This algorithm exhibited good stability and convergence in numerical simulation, thus verifying that it is a feasible and effective method for interpretations of multi-source semi-airborne transient electromagnetic data.

Key wordsmulti-source    semi-airborne transient electromagnetic method    adaptive    regularization    1D inversion
收稿日期: 2021-05-18      修回日期: 2021-10-19      出版日期: 2022-04-20
ZTFLH:  P631  
基金资助:新疆维吾尔自治区自然科学基金项目(2017D01C064);天池博士计划项目
作者简介: 张莹莹(1989-),女,讲师,硕士生导师,主要从事瞬变电磁场的理论和应用方面的研究工作。Email: zhangyy19890423@163.com
引用本文:   
张莹莹. 带约束的多辐射场源半航空瞬变电磁一维自适应正则化反演方法[J]. 物探与化探, 2022, 46(2): 424-432.
ZHANG Ying-Ying. A constrained and adaptive regularized 1D inversion method of multi-source semi-airborne transient electromagnetics. Geophysical and Geochemical Exploration, 2022, 46(2): 424-432.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.1286      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I2/424
Fig.1  地表电偶极子层状模型示意
Fig.2  多辐射场源剖分示意
Fig.3  平行源装置布置
Fig.4  H型模型反演结果
Fig.5  K型模型反演结果
Fig.6  HK型模型反演结果
Fig.7  cnoise=0.3高斯随机噪声H型模型反演结果
Fig.8  cnoise=0.3高斯随机噪声K型模型反演结果
Fig.9  cnoise=0.1高斯随机噪声HK型模型反演结果
Fig.10  cnoise=0.3高斯随机噪声HK型模型反演结果
[1] Nabighian N M. Electromagnetic methods in applied geophysics-theory (Volume 1 )[M]. Tulsa OK: Society of Exploration, 1988.
[2] Mogi T, Kusunoki K, Kaieda H, et al. Grounded electrical-source airborne transient electromagnetic (GREATEM) survey of mount Bandai, north-eastern Japan[J]. Exploration Geophysics, 2009, 40: 1-7.
doi: 10.1071/EG08115
[3] Allah S A, Ito H, Mogi T, et al. Three-dimensional resistivity characterization of a coastal area: Application of grounded electrical-source airborne transient electromagnetic (GREATEM) survey data from Kujukuri beach, Japan[J]. Journal of Applied Geophysics, 2013, 99(3): 1-11.
doi: 10.1016/j.jappgeo.2013.09.011
[4] Ito H, Mogi T, Jomori A, et al. Further investigation of underground resistivity structures in coastal areas using grounded-source airborne electromagnetics[J]. Earth Planets & Space, 2011, 63(8): 9-12.
[5] Ito H, Kaieda H, Mogi T, et al. Grounded electrical-source airborne transient electromagnetics (GREATEM) survey of Aso volcano, Japan[J]. Exploration Geophysics, 2013, 44: A-D.
[6] 嵇艳鞠, 王远, 徐江, 等. 无人飞艇长导线源时域地空电磁勘探系统及其应用[J]. 地球物理学报, 2013, 56(11):3640-3650.
[6] Ji Y J, Wang Y, Xu J, et al. Development and application of the grounded long wire source airborne electromagnetic exploration system based on unmanned airship[J]. Chinese Journal of Geophysics, 2013, 56(11): 3640-3650.
[7] 李肃义, 林君, 阳贵红, 等. 电性源时域地空电磁数据小波去噪方法研究[J]. 地球物理学报, 2013, 56(9):3145-3152.
[7] Li S Y, Lin J, Yang G H, et al. Ground-airborne electromagnetic signals de-noising using a combined wavelet transform algorithm[J]. Chinese Journal of Geophysics, 2013, 56(9): 3145-3152.
[8] 方涛, 张建军, 付成群, 等. 无人机地空瞬变电磁系统在冶山地下巷道探测中的应用[J]. 地球物理学进展, 2015, 30(5):2366-2372.
[8] Fang T, Zhang J J, Fu C Q, et al. Using ground-airborne transient electromagnetic system on unmanned aerial vehicle detecting Yeshan underground tunnels[J]. Progress in Geophysics, 2015, 30(5): 2366-2372.
[9] 刘金鹏. 电性源地空瞬变电磁法在采空区探测中的应用[D]. 西安: 长安大学, 2018.
[9] Liu J P. The application of ground-airborne transient electromagnetic method with electric source in the gobs detection[D]. Xi’an: Chang’an University, 2018.
[10] 吴启龙. 半航空瞬变电磁视电阻率成像及在复杂地形区域隧道勘察中的应用[D]. 济南: 山东大学, 2019.
[10] Wu Q L. Semi-airborne transient electromagnetic apparent resistivity imaging and its application in tunnel survey in complex terrain areas[D]. Jinan: Shandong University, 2019.
[11] 谢小国, 魏良帅, 王绪本, 等. 半航空瞬变电磁法在古河道结构探测中的应用[J]. 地球物理学进展, 2021, 36(4):1734-1742.
[11] Xie X G, Wei L S, Wang X B, et al. Application of semi-airborne TEM to structure exploration in the old channels[J]. Progress in Geophysics, 2021, 36(4): 1734-1742.
[12] 张莹莹, 李貅. 地空瞬变电磁法研究进展[J]. 地球物理学进展, 2017, 32(4):1735-1741.
[12] Zhang Y Y, Li X. Research progress on ground-airborne transient electromagnetic method[J]. Progress in Geophysics, 2017, 32(4): 1735-1741.
[13] 阳贵红. 时域电性源地—空电磁探测数据预处理研究[D]. 长春: 吉林大学, 2012.
[13] Yang G H. Data Preprocessing research on electrical-source of time domain ground-airborne electromagnetic[D]. Changchun: Jilin University, 2012.
[14] 嵇艳鞠, 徐江, 吴琼, 等. 基于神经网络电性源半航空视电阻率反演研究[J]. 电波科学学报, 2014, 29(5):973-980.
[14] Ji Y J, Xu J, Wu Q, et al. Apparent resistivity inversion of electrical source semi-airborne electromagnetic data based on neutral network[J]. Chinese Journal of Radio Science, 2014, 29(5): 973-980.
[15] 张莹莹, 李貅, 姚伟华, 等. 多辐射场源地空瞬变电磁法多分量全域视电阻率定义[J]. 地球物理学报, 2015, 58(8):2745-2758.
[15] Zhang Y Y, Li X, Yao W H, et al. Multi-component full field apparent resistivity definition of multi-source ground-airborne transient electromagnetic method with galvanic sources[J]. Chinese Journal of Geophysics, 2015, 58(8): 2745-2758.
[16] 李貅, 张莹莹, 卢绪山, 等. 电性源瞬变电磁地空逆合成孔径成像[J]. 地球物理学报, 2015, 58(1):277-288.
[16] Li X, Zhang Y Y, Lu X S, et al. Inverse synthetic aperture imaging of ground-airborne transient electromagnetic method with a galvanic source[J]. Chinese Journal of Geophysics, 2015, 58(1): 277-288.
[17] 张莹莹, 李貅, 李佳, 等. 多辐射场源地空瞬变电磁法快速成像方法研究[J]. 地球物理学进展, 2016, 31(2):869-876.
[17] Zhang Y Y, Li X, Li J, et al. Fast imaging technique of multi-source ground-airborne transient electromagnetic method[J]. Progress in Geophysics, 2016, 31(2): 869-876.
[18] 吕仁斌. 半航空瞬变电磁数据处理及快速成像方法研究[D]. 成都: 成都理工大学, 2017.
[18] Lyu R B. Research on rapid simulation and data processing of semi-aerial transient electromagnetic[D]. Chengdu: Chengdu University of Technology, 2017.
[19] 王仕兴, 易国财, 王绪本, 等. 基于分段二分搜索算法的半航空瞬变电磁电导率深度快速成像方法研究[J]. 地球物理学进展, 2021, 36(3):1317-1324.
[19] Wang S X, Yi G C, Wang X B, et al. Research on the semi-airborne transient electromagnetic conductivity depth rapid imaging method based on segmented binary search algorithm[J]. Progress in Geophysics, 2021, 36(3): 1317-1324.
[20] 张澎, 余小东, 许洋, 等. 半航空时间域电磁数据一维自适应正则化反演物[J]. 物探化探计算技术, 2017, 39(1):1-8.
[20] Zhang P, Xu X D, Xu Y, et al. An adaptive regularized inversion of 1D semi-airborne time-domain electromagnetic data[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2017, 39(1): 1-8.
[21] Abdallah S, Mogi T, Kim H J. Three-dimensional inversion of GREATEM data: Application to GREATEM survey data from Kujukuri beach, Japan[J]. Applied Earth Observations and Remote Sensing, 2017, 99: 1-7.
[22] 赵涵, 景旭, 李貅, 等. 多辐射场源地空瞬变电磁一维反演方法研究[J]. 物探与化探, 2019, 43(1):132-142.
[22] Zhao H, Jing X, Li X, et al. A study of 1D inversion of multi-source ground-airborne transient electromagnetic method[J]. Geophysical and Geochemical Exploration, 2019, 43(1): 132-142.
[23] 杨聪, 毛立峰, 毛鑫鑫, 等. 半航空瞬变电磁自适应正则化-阻尼最小二乘算法研究[J]. 地质与勘探, 2020, 56(1):137-146.
[23] Yang C, Mao L F, Mao X X, et al. Study on the semi-aerospace transient electromagnetic adaptive regularization-damped least squares algorithm[J]. Geology and Exploration, 2020, 56(1): 137-146.
[24] 李貅, 胡伟明, 薛国强. 多辐射源地空瞬变电磁响应三维数值模拟研究[J]. 地球物理学报, 2021, 64(2):716-723.
[24] Li X, Hu W M, Xue G Q. 3D modeling of multi-radiation source semi-airborne transient electromagnetic response[J]. Chinese Journal of Geophysics, 2021, 64(2): 716-723.
[25] 毛立峰, 王绪本, 陈斌. 直升机航空瞬变电磁自适应正则化一维反演方法研究[J]. 地球物理学进展, 2011, 26(1):300-305.
[25] Mao L F, Wang X B, Chen B. Study on adaptive regularized 1D method of helicopter TEM data[J]. Progress in Geophysics, 2011, 26(1): 300-305.
[26] Constable S C, Parker R L, Constable C G. Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data[J]. Geophysics, 1987, 52(3): 289-300.
doi: 10.1190/1.1442303
[27] 陈小斌, 赵国泽, 汤吉, 等. 大地电磁自适应正则化反演算法[J]. 地球物理学报, 2005, 48(4):937-946.
[27] Chen X B, Zhao G Z, Tang J, et al. An adaptive regularized inversion algorithm for magnetotelluric data[J]. Chinese Journal of Geophysics, 2005, 48(4): 937-946.
[28] 张莹莹. 地空瞬变电磁逆合成孔径成像方法研究[D]. 西安: 长安大学, 2016.
[28] Zhang Y Y. Study on inverse synthetic aperture imaging of ground-airborne transient electromagnetic method[D]. Xi’an: Chang’an University, 2016.
[29] 方文藻, 李予国, 李貅. 瞬变电磁测深法原理[M]. 西安: 西北工业大学出版社, 1993.
[29] Fang W Z, Li Y G, Li X. Theory of transient electromagnetic sounding[M]. Xi’an: Northwestern Polytechnical University Press, 1993.
[30] 姚伟华. 大回线源瞬变电磁一维自适应反演方法及应用[J]. 物探与化探, 2019, 43(3):584-588.
[30] Yao W H. The one-dimensional adaptive inversion method for large loop source TEM and its application[J]. Geophysical and Geochemical Exploration, 2019, 43(3): 584-588.
[1] 张利振, 孙成禹, 王志农, 李世中, 焦峻峰, 颜廷容. 面波信息约束的初至波走时层析反演方法[J]. 物探与化探, 2023, 47(5): 1198-1205.
[2] 吴国培, 张莹莹, 赵华亮, 周钟航, 李医滨. 基于横向约束的中心回线瞬变电磁一维反演[J]. 物探与化探, 2023, 47(4): 1024-1032.
[3] 丁志军, 罗维斌, 连伟章, 张星, 何海颦. 基于两步变异差分进化算法的激电测深一维反演[J]. 物探与化探, 2023, 47(4): 1033-1039.
[4] 张金强. 基于正则化理论的时频分析方法及应用[J]. 物探与化探, 2023, 47(4): 965-974.
[5] 陈海文, 叶益信, 杨烁健, 覃金生. 基于非结构有限元的电阻率超前探测中旁侧异常影响特征研究[J]. 物探与化探, 2023, 47(4): 975-985.
[6] 陈晓, 曾志文, 邓居智, 张志勇, 陈辉, 余辉, 王彦国. 基于不等式和Gramian约束的MT和重力正则化联合反演[J]. 物探与化探, 2023, 47(3): 575-583.
[7] 王仕兴, 何可, 尹小康, 魏栋华, 赵思为, 郭明. 半航空瞬变电磁一维聚焦反演研究[J]. 物探与化探, 2023, 47(2): 410-419.
[8] 邢文军, 曹思远, 陈思远, 孙耀光. 基于谱反演方法的叠后纵波阻抗反演[J]. 物探与化探, 2023, 47(2): 429-437.
[9] 崔亚彤, 王胜侯, 蔡忠贤. 基于快速自适应非局部均值滤波的地震随机噪声压制方法[J]. 物探与化探, 2022, 46(5): 1187-1195.
[10] 张文波, 张莹, 李建慧. 地面回线源瞬变电磁法一维反演系统及其应用[J]. 物探与化探, 2022, 46(5): 1258-1266.
[11] 姚含, 徐海. 基于梯度投影法的全变差正则化全波形反演[J]. 物探与化探, 2022, 46(4): 977-981.
[12] 王通, 刘建勋, 王兴宇, 李广才, 田密. Shearlet域尺度角度自适应深反射地震数据随机噪声压制方法[J]. 物探与化探, 2022, 46(3): 704-713.
[13] 邢涛, 袁伟, 李建慧. 回线源瞬变电磁法的一维Occam反演[J]. 物探与化探, 2021, 45(5): 1320-1328.
[14] 何可, 郭明, 胡章荣, 易国财, 王仕兴. 半航空瞬变电磁L1范数自适应正则化反演[J]. 物探与化探, 2021, 45(5): 1338-1346.
[15] 朱学娟, 单沙沙, 殷梓原, 孔雪. PNN测井清污混注水淹层剩余油饱和度计算方法[J]. 物探与化探, 2021, 45(3): 679-685.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com