Please wait a minute...
E-mail Alert Rss
 
物探与化探  2021, Vol. 45 Issue (5): 1320-1328    DOI: 10.11720/wtyht.2021.0103
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
回线源瞬变电磁法的一维Occam反演
邢涛1(), 袁伟2, 李建慧3()
1.北京探创资源科技有限公司,北京 100071
2.内蒙古地质工程有限责任公司,内蒙古 呼和浩特 010010
3.中国地质大学(武汉) 地球物理与空间信息学院,湖北 武汉 430074
One-dimensional Occam's inversion for transient electromagnetic data excited by a loop source
XING Tao1(), YUAN Wei2, LI Jian-Hui3()
1. Beijing Exploration Resources Technology Co., Ltd., Beijing 100071, China
2. Inner Mongolia Geological Engineering Co., Ltd., Hohhot 010010, China
3. Institute of Geophysics and Geomatics, China University of Geosciences(Wuhan), Wuhan 430074, China
全文: PDF(5104 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

基于Dipole 1D一维正演程序和Occam算法开发了回线源瞬变电磁法一维反演程序,并以四层介质模型验证了其正确性。对于倾斜界面模型,待反演数据由时域矢量有限单元法三维正演计算,通过对比实际模型和等效模型的反演结果,说明了一维反演可直接应用于此类情形。最后,开展了那仁宝力格煤田玄武岩深部探测案例研究。在反演电阻率断面图中,玄武岩整体形态呈“锅底状”,与多个钻孔资料吻合良好,进一步验证了该反演程序的正确性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邢涛
袁伟
李建慧
关键词 回线源瞬变电磁法Occam算法一维反演    
Abstract

A 1D inversion code is developed for the loop-source transient electromagnetic method (TEM) based on the open-source code Dipole1D and Occam's algorithm. This code is tested by a four-layer stratified model. Then, the model with a tilted earth-air interface is considered, for which the synthetic data are calculated by 3D finite-element method. The inversion results show that 1D inversion can be directly used for the scenario with tilted interface. Finally, this 1D inversion code is used for a field case, in which TEM is employed to delineate the 3D distributed domains of a basalt which intruded into shale and sandstone. The inversion result shows that the thickness of the basalt coincides with the drilling data, and the shape of the basalt like a pot bottom.

Key wordsloop source    TEM    Occam's method    1D inversion
收稿日期: 2021-02-26      出版日期: 2021-12-15
:  P631  
基金资助:国家重点研发计划项目(2020YFE0201300-06);国家自然科学基金(42022030)
通讯作者: 李建慧
作者简介: 邢涛(1983-),男,硕士,高级工程师,长期从事地球物理勘探方面的研究工作。Email: 156663062@qq.com
引用本文:   
邢涛, 袁伟, 李建慧. 回线源瞬变电磁法的一维Occam反演[J]. 物探与化探, 2021, 45(5): 1320-1328.
XING Tao, YUAN Wei, LI Jian-Hui. One-dimensional Occam's inversion for transient electromagnetic data excited by a loop source. Geophysical and Geochemical Exploration, 2021, 45(5): 1320-1328.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2021.0103      或      https://www.wutanyuhuatan.com/CN/Y2021/V45/I5/1320
Fig.1  回线源瞬变电磁法一维正演框架
Fig.2  对于四层模型,回线中心点反演地电模型
Fig.3  四层模型的反演结果
Fig.4  倾斜界面模型示意
Fig.5  回线中心测点数据反演获取的地电模型(反演方案1)
Fig.6  采用不同反演方案时,实际模型(Tx2发射回线)和一维情形的反演地电模型
Fig.7  随机噪声影响下,实际模型(Tx2发射回线)的反演地电模型
黑色曲线为一维模型,彩色曲线为反演结果
Fig.8  5个测点数据分别反演获取的地电模型
Fig.9  x=1 000 m和2 000 m时的一维反演结果
a、c—不同测点的感应电动势;b、d—拟合差与实测数据标准差
Fig.10  由单点反演结果拼接的测线1地电模型断面
[1] Flores C, Peralta-Ortega S A. Induced polarization with in-loop transient electromagnetic soundings: A case study of mineral discrimination at El Arco porphyry copper, Mexico[J]. Journal of Applied Geophysics, 2009, 68(3):423-436.
doi: 10.1016/j.jappgeo.2009.03.009
[2] Xue G Q, Qin K Z, Li X, et al. Discovery of a large-scale porphyry molybdenum deposit in Tibet through a modified TEM exploration method[J]. Journal of Environmental and Engineering Geophysics, 2012, 17(1):19-25.
doi: 10.2113/JEEG17.1.19
[3] Yang D, Oldenburg D W. Three-dimensional inversion of airborne time-domain electromagnetic data with applications to a porphyry deposit[J]. Geophysics, 2012, 77(2):B23-B34.
doi: 10.1190/geo2011-0194.1
[4] Scholl C, Helwig S L, Tezkan B, et al. 1-D multimodel joint inversion of TEM-data over multidimensional structures[J]. Geophysical Journal International, 2009, 176(1):81-94.
doi: 10.1111/gji.2008.176.issue-1
[5] Kirkegaard C, Auken E. A parallel, scalable and memory efficient inversion code for very large-scale airborne electromagnetics surveys[J]. Geophysical Prospecting, 2015, 63(2):495-507.
doi: 10.1111/gpr.2015.63.issue-2
[6] 孙怀凤, 张诺亚, 柳尚斌, 等. 基于L1范数的瞬变电磁非线性反演[J]. 地球物理学报, 2019, 62(12):4860-4873.
[6] Sun H F, Zhang N Y, Liu S B, et al. L1-norm based nonlinear inversion of transient electromagnetic data[J]. Chinese J. Geophys., 2019, 62(12):4860-4873.
[7] Liu Y, Yin C, Qiu C, et al. 3-D inversion of transient EM data with topography using unstructured tetrahedral grids[J]. Geophysical Journal International, 2019, 217(1):301-318.
doi: 10.1093/gji/ggz014
[8] Auken E, Christiansen A V, Kirkegaard C, et al. An overview of a highly versatile forward and stable inverse algorithm for airborne, ground-based and borehole electromagnetic and electric data[J]. Exploration Geophysics, 2015, 46(3):223-235.
doi: 10.1071/EG13097
[9] Raiche A P, Jupp D L B, Ruter H, et al. The joint use of coincident loop transient electromagnetic and Schlumberger sounding to resolve layered structures[J]. Geophysics, 1985, 50(10):1618-1627.
doi: 10.1190/1.1441851
[10] 黄皓平, 王维中. 时间域航空电磁数据的反演[J]. 地球物理学报, 1990, 33(1):87-97.
[10] Huang H P, Wang W Z. Inversion of time-domain airborne electromagnetic data[J]. Chinese J. Geophys., 1990, 33(1):87-97.
[11] Farquharson C G, Oldenburg D W. Inversion of time-domain electromagnetic data for a horizontally layered earth[J]. Geophysical Journal International, 1993, 114(3):433-442.
doi: 10.1111/gji.1993.114.issue-3
[12] Effersø F, Auken E, Sørensen K I. Inversion of band-limited TEM responses[J]. Geophysical Prospecting, 1999, 47(4):551-564.
doi: 10.1046/j.1365-2478.1999.00135.x
[13] Auken E, Christiansen A V. Layered and laterally constrained 2D inversion of resistivity data[J]. Geophysics, 2004, 69(3):752-761.
doi: 10.1190/1.1759461
[14] Auken E, Christiansen A V, Jacobsen L H, et al. A resolution study of buried valleys using laterally constrained inversion of TEM data[J]. Journal of Applied Geophysics, 2008, 65(1):10-20.
doi: 10.1016/j.jappgeo.2008.03.003
[15] Viezzoli V, Christiansen A V, Auken E, et al. Quasi-3D modeling of airborne TEM data by spatially constrained inversion[J]. Geophysics, 2008, 73(3):F105-F113.
doi: 10.1190/1.2895521
[16] Constable S C, Parker R L, Constable C G. Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data[J]. Geophysics, 1987, 52(3):289-300.
doi: 10.1190/1.1442303
[17] Sudha , Tezkan B, Siemon B. Appraisal of a new 1D weighted joint inversion of ground based and helicopter-borne electromagnetic data[J]. Geophysical Prospecting, 2014, 62(3):597-614.
doi: 10.1111/gpr.2014.62.issue-3
[18] 毛立峰, 王绪本, 陈斌. 直升机航空瞬变电磁自适应正则化一维反演方法研究[J]. 地球物理学进展, 2011, 26(1):300-305.
[18] Mao L F, Wang X B, Chen B. Study on an adaptive regularized 1D inversion method of helicopter TEM data[J]. Progress in Geophysics, 2011, 26(1):300-305.
[19] 齐彦福, 殷长春, 王若, 等. 多通道瞬变电磁m序列全时正演模拟与反演[J]. 地球物理学报, 2015, 58(7):2566-2577.
[19] Qi Y F, Yin C C, Wang R, et al. Multi-transient EM full-time forward modeling and inversion of m-sequences[J]. Chinese J. Geophys., 2015, 58(7):2566-2577.
[20] 李海, 薛国强, 钟华森, 等. 多道瞬变电磁法共中心点道集数据联合反演[J]. 地球物理学报, 2016, 59(12):4439-4447.
[20] Li H, Xue G Q, Zhong H S, et al. Joint inversion of CMP gathers of multi-channel transient electromagnetic data[J]. Chinese J. Geophys., 2016, 59(12):4439-4447.
[21] Li M, Cheng J, Wang P, et al. Transient electromagnetic inversion based on the PSO-DLS combination algorithm[J]. Exploration Geophysics, 2019, 50(5):472-480.
doi: 10.1080/08123985.2019.1627172
[22] Key K. 1D inversion of multicomponent, multifrequency marine CSEM data: Methodology and synthetic studies for resolving thin resistive layers[J]. Geophysics, 2009, 74(2):F9-F20.
doi: 10.1190/1.3058434
[23] Guptasarma D, Singh B. New digital linear filters for Hankel J0 and J1 transforms[J]. Geophysical Prospecting, 1997, 45(5):745-762.
doi: 10.1046/j.1365-2478.1997.500292.x
[24] Anderson W L. Fourier cosine and sine transforms using lagged convolutions in double-precision (subprograms DLAGF0/DLAGF1) [R]. U.S. Geological Survey, 1983.
[25] Li J, Lu X, Farquharson C G, et al. A finite-element time-domain forward solver for electromagnetic methods with complex-shaped loop sources[J]. Geophysics, 2018, 83(3):E117-E132.
doi: 10.1190/geo2017-0216.1
[1] 张莹莹. 电性源瞬变电磁法综述[J]. 物探与化探, 2021, 45(4): 809-823.
[2] 李瑞友, 张淮清, 吴昭. 基于在线惯序极限学习机的瞬变电磁非线性反演[J]. 物探与化探, 2021, 45(4): 1048-1054.
[3] 裴肖明, 冯国瑞, 戚庭野. 瞬变电磁法探测复杂状态下煤矿充水采空区物理模拟实验[J]. 物探与化探, 2021, 45(4): 1055-1063.
[4] 刘伟, 黄韬, 王庭勇, 刘怡, 张继, 刘文涛, 张琦斌, 李强. 综合物探方法在城市隐伏断裂探测中的应用[J]. 物探与化探, 2021, 45(4): 1077-1087.
[5] 吴国培, 张莹莹, 张博文, 赵华亮. 基于深度学习的中心回线瞬变电磁全区视电阻率计算[J]. 物探与化探, 2021, 45(3): 750-757.
[6] 陈健强, 李雁川, 田浩, 李汉超. 含水采空区全空间瞬变电磁响应分析[J]. 物探与化探, 2021, 45(2): 546-550.
[7] 张莹莹. 多辐射场源半航空瞬变电磁法多分量响应特征分析[J]. 物探与化探, 2021, 45(1): 102-113.
[8] 李展辉, 杨淼鑫, 曹学峰. 瞬变电磁法感应电压场与B场探测效果的数值计算对比分析[J]. 物探与化探, 2021, 45(1): 114-126.
[9] 魏海民, 李星, 孙帮涛, 周胜, 牛杰. 地球物理方法在帷幕注浆治水中的探测分析[J]. 物探与化探, 2021, 45(1): 245-251.
[10] 李飞, 谭捍东, 孟庆敏, 吴俊彦, 丁志强. 二连—东乌旗地区固定翼三频航电数据反演方法应用对比研究[J]. 物探与化探, 2020, 44(5): 1172-1182.
[11] 胡佳豪, 李貅, 刘航, 胡伟明, 岳鑫. TBM机施工隧道瞬变电磁超前探测研究[J]. 物探与化探, 2020, 44(5): 1183-1189.
[12] 陈大磊, 陈卫营, 郭朋, 王润生, 王洪军, 张超, 马启合, 贺春燕. SOTEM法在城镇强干扰环境下的应用——以坊子煤矿采空区为例[J]. 物探与化探, 2020, 44(5): 1226-1232.
[13] 郭龙凤, 陈德培, 魏长勇, 王刚. 弥河下游浅埋古河道的勘探识别[J]. 物探与化探, 2020, 44(4): 863-869.
[14] 郭嵩巍, 刘小畔, 郑凯, 张磊. 基于全区视电阻率的瞬变电磁一维Occam反演中雅克比矩阵的解析算法[J]. 物探与化探, 2020, 44(3): 559-567.
[15] 崔方智, 周韬, 张兵. 煤层中CO2注入运移瞬变电磁法监测技术探索[J]. 物探与化探, 2020, 44(3): 573-581.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com