Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (2): 383-391    DOI: 10.11720/wtyht.2022.1541
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
地—井瞬变电磁三维响应特征分析与异常体快速定位方法研究
赵友超1(), 张军1,2(), 范涛3, 姚伟华3, 杨洋1,4, 孙怀凤1,4
1.山东大学 岩土与结构工程研究中心,山东 济南 250061
2.山东省交通规划设计院,山东 济南 250031
3.中煤科工集团 西安研究院有限公司,陕西 西安 710077
4.山东省工业技术研究院 先进勘探与透明城市协同创新中心,山东 济南 250061
Analysis of 3D ground-borehole TEM response characteristics and rapid positioning method for anomalous bodies
ZHAO You-Chao1(), ZHANG Jun1,2(), FAN Tao3, YAO Wei-Hua3, YANG Yang1,4, SUN Huai-Feng1,4
1. Geotechnical and Structural Engineering Research Center, Shandong University, Jinan 250061, China
2. Shandong Provincial Communications Planning and Design Institute, Jinan 250031, China
3. Xi'an Research Institute of China Coal Technology & Engineering Group, Xi'an 710077, China
4. Advanced Exploration and Transparent City Innovation Center, Shandong Research Institute of Industrial Technology, Jinan 250061, China
全文: PDF(7700 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

通过对含异常体的三维地电模型进行系统正演和分析,提出了一种地—井瞬变电磁异常体快速定位方法。在对含异常体的三维地电模型进行正演响应规律分析时发现:纯异常场的XY分量曲线零点以及Z分量曲线的极值点与异常体深度对应较好;当异常体的规模、电阻率、埋深发生改变时,XY分量曲线形态基本不变;当异常体方位发生变化时,XY分量曲线形态发生变化。在此基础上,提出地—井瞬变电磁异常体快速定位方法:首先,依据XY曲线的零点确定异常体所在深度;其次,依据XY分量曲线形态确定异常体所在象限(90°范围);最后,依据X+Y或者X-Y分量的曲线形态将异常体定位于井周45°范围内。数值试验显示本方法对不同方位异常体模型的定位结果均与设计模型吻合。采用陕北某矿区地—井瞬变电磁实测数据作进一步验证,本文方法推断的结果与实际吻合较好。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵友超
张军
范涛
姚伟华
杨洋
孙怀凤
关键词 地—井瞬变电磁时域有限差分三维正演异常体定位    
Abstract

Through systematic forward modeling and analysis of a 3D geoelectric model containing anomalous bodies, this study proposed a rapid positioning method of anomalous bodies based on the ground-borehole transient electromagnetic (TEM) method. The analysis of the forward modeling response laws of the 3D geoelectric model containing anomalous bodies shows that the zero points of the X and Y component curves and the extreme points of the Z component curve of a pure anomaly field correspond well to the depths of the anomalous bodies; the morphologies of the X and Y component curves are basically unchanged when the sizes, resistivity, and burial depths of the anomalous bodies change but change when the orientations of anomalous bodies change. On this basis, this study proposed the following method to rapidly position anomalous bodies using the ground-borehole TEM method. First, determine the depths of anomalous bodies according to the zero points of the X and Y curves. Next, determine the quadrants (within 90°) of anomalous bodies according to the morphologies of the X and Y component curves. Finally, position anomalous bodies within 45° of boreholes according to the morphologies of the X+Y or X-Y component curves. Numerical experiments show that the positioning results of models of anomalous bodies with different orientations are consistent with those of the model designed in this study. As further verified using the ground-borehole TEM measured data of a mining area in northern Shaanxi, the inference that there is a water-filled goaf to the northwest of the borehole obtained using the method proposed in this study well agrees with the actual situation.

Key wordsground-borehole transient electromagnetic    time-domain finite difference    3D forward modeling    positioning of anomalous bodies
收稿日期: 2021-09-27      修回日期: 2021-12-12      出版日期: 2022-04-20
ZTFLH:  P631  
基金资助:山东省自然科学基金项目(ZR2019MD20);国家自然科学基金项目(42074145);国家自然科学基金项目(42004056)
通讯作者: 张军
作者简介: 赵友超(1997-),男,主要从事地—井瞬变电磁正反演与应用研究工作。Email: 201914579@mail.sdu.edu.cn
引用本文:   
赵友超, 张军, 范涛, 姚伟华, 杨洋, 孙怀凤. 地—井瞬变电磁三维响应特征分析与异常体快速定位方法研究[J]. 物探与化探, 2022, 46(2): 383-391.
ZHAO You-Chao, ZHANG Jun, FAN Tao, YAO Wei-Hua, YANG Yang, SUN Huai-Feng. Analysis of 3D ground-borehole TEM response characteristics and rapid positioning method for anomalous bodies. Geophysical and Geochemical Exploration, 2022, 46(2): 383-391.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.1541      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I2/383
Fig.1  模型示意
模型1 模型2 模型3 模型4
埋深/m 50 50 50/100/150 50
ρ异常体/(Ω·m) 10/50/100 10 10 10
水平方位角/(°) 45 45 45 45/135/225/315
尺寸/m 2 2/4/6 2 2
ρ围岩/(Ω·m) 1 000 1 000 1 000 1 000
异常体与钻孔
水平间距/m
10 10 10 10
Table 1  三维模型正演参数
Fig.2  不同电阻率异常体模型的响应曲线
Fig.3  不同规模异常体模型的响应曲线
Fig.4  不同目标体埋深模型响应曲线
Fig.5  不同水平方位模型的响应曲线
Fig.6  区域划分示意
区域 幅值 区域 幅值
1 |dBx/dt|>|dBy/dt| 5 |dBx/dt|>|dBy/dt|
2 |dBx/dt|<|dBy/dt| 6 |dBx/dt|<|dBy/dt|
3 |dBx/dt|<|dBy/dt| 7 |dBx/dt|<|dBy/dt|
4 |dBx/dt|>|dBy/dt| 8 |dBx/dt|>|dBy/dt|
Table 2  XY分量幅值对比
纯异常曲线形态 象限 X-Y/X+Y曲线形态 区域
X:反“S”型,Y:反“S”型 第一 X-Y:反“S”型 1
X:反“S”型,Y:反“S”型 第一 X-Y:“S”型 2
X:“S”型,Y:反“S”型 第二 X+Y:反“S”型 3
X:“S”型,Y:反“S”型 第二 X+Y:“S”型 4
X:“S”型,Y:“S”型 第三 X-Y:“S”型 5
X:“S”型,Y:“S”型 第三 X-Y:反“S”型 6
X:反“S”型,Y:“S”型 第四 X+Y:“S”型 7
X:反“S”型,Y:“S”型 第四 X+Y:反“S”型 8
Table 3  目标体区域定位
Fig.7  异常体方位示意
Fig.8  -1 纯异常分量模型响应曲线
Fig.8  -2 纯异常分量模型响应曲线
Fig.9  异常体定位结果
Fig.10  采空区所在区域示意
Fig.11  实测总场三分量响应曲线
Fig.12  纯异常场响应曲线
Fig.13  充水采空区定位结果
[1] 朴化荣. 电磁测深法原理[M]. 北京: 地质出版社, 1990.
[1] Piao H R. Principle of electromagnetic sounding[M]. Beijing: Geological Publishing House, 1990.
[2] Irvine R J. Drillhole TEM surveys at Thalanga, Queensland[J]. Exploration Geophysics, 1987, 18: 285-293.
doi: 10.1071/EG987285
[3] Xue G Q, Qin K Z, Li X, et al. Discovery of a Large-scale porphyry molybdenum deposit in tibet through a modified TEM exploration method[J]. Journal of Environmental and Engineering Geophysics, 2012, 17(1): 19-25.
doi: 10.2113/JEEG17.1.19
[4] Yang D, Oldenburg D W. Three-dimensional inversion of airborne time-domain electromagnetic data with applications to a porphyry deposit[J]. Geophysics, 2012, 77(2): B23-B34.
[5] Ezersky M. TEM study of the geoelectrical structure and groundwater salinity of the Nahal Hever sinkhole site, Dead Sea shore, Israel[J]. Journal of Applied Geophysics, 2011, 75(1): 99-112.
doi: 10.1016/j.jappgeo.2011.06.011
[6] Keydar S D. Application of seismic diffraction imaging for detecting near-surface inhomogeneities in the Dead Sea area[J]. Journal of Applied Geophysics, 2010, 71(2): 47-52.
doi: 10.1016/j.jappgeo.2010.04.001
[7] 李术才, 刘斌, 孙怀凤, 等. 隧道施工超前地质预报研究现状及发展趋势[J]. 岩石力学与工程学报, 2014, 33(6):1090-1113.
[7] Li S C, Liu B, Sun H F, et al. State of ART and trends of advanced geological prediction in tunnel construction[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(6): 1090-1113.
[8] 薛国强, 李貅. 瞬变电磁隧道超前预报成像技术[J]. 地球物理学报, 2008, 51(3):894-900.
[8] Xue G Q, Li X. The technology of TEM tunnel prediction imaging[J]. Chinese Journal of Geophysics, 2008, 51(3): 894-900.
[9] 李术才, 孙怀凤, 李貅, 等. 隧道瞬变电磁超前预报平行磁场响应探测方法[J]. 岩石力学与工程学报, 2014, 33(7):1309-1318.
[9] Li S C, Sun H F, Li X, et al. Advanced geology prediction with parallel transient electromagnetic detection in tunneling[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(7): 1309-1318.
[10] 李貅, 薛国强, 李术才, 等. 瞬变电磁隧道超前预报方法与应用[M]. 北京: 地质出版社, 2013.
[10] Li X, Xue G Q, Li S C, et al. The method and application of transient electromagnetic in tunnel prediction[M]. Beijing: Geological Publishing House, 2013.
[11] Dyck A V. Drill-hole electromagnetic methods[M]// Electromagnetic Methods in Applied Geophysics. Tulsa: Society of Exploration Geophysicists, 1991.
[12] 牛之链. 时间域电磁法原理[M]. 长沙: 中南大学出版社, 2007.
[12] Niu Z L. Principle of time domain electromagnetic[M]. Changsha: Central South University Press, 2007
[13] Woods D V. A model study of the Crone borehole pulse electromagnetic (PEM) system[R]. Ontario: Queen’s University, 1975.
[14] Eaton P A, Hohmann G W. The influence of a conductive host on two-dimensional borehole transient electromagnetic responses[J]. Geophysics, 1984, 49(7): 861-869.
doi: 10.1190/1.1441732
[15] West R C, Ward S H. The borehole transient electromagnetic response of a three-dimensional fracture zone in a conductive half-space[J]. Geophysics, 1988, 53(11): 1469-1478.
doi: 10.1190/1.1442427
[16] Buselli G, Lee S K. Modelling of drill-hole TEM responses from multiple targets covered by a conductive overburden[J]. Exploration Geophysics, 1996, 27: 2-3, 141-153.
[17] 李建慧, 刘树才, 焦险峰, 等. 地—井瞬变电磁法三维正演研究[J]. 石油地球物理勘探, 2015, 50(3):556-564.
[17] Li J H, Liu S C, Jiao X F, et al. Three-dimensional forward modeling for surfaceborehole transient electromagnetic method[J]. Oil Geophysical Prospecting, 2015, 50(3): 556-564.
[18] Dyck A V, West G F. The role of simple computer models in interpretations of wide-band, drill-hole electromagnetic surveys in mineral exploration[J]. Geophysics, 1984, 49(7): 957-980.
doi: 10.1190/1.1441741
[19] Bishop J R, Lewis J G, Macnae J C. Down-hole electromagnetic surveys at Renison Bell, Tasmania[J]. Exploration Geophysics, 1987, 18(3): 265-277.
doi: 10.1071/EG987265
[20] 孟庆鑫, 潘和平. 地—井瞬变电磁响应特征数值模拟分析[J]. 地球物理学报, 2012, 55(3):1046-1053.
[20] Meng Q X, Pan H P. Numerical simulation analysis of surface-hole TEM responses[J]. Chinese Journal Geophysics, 2012, 55(3): 1046-1053.
[21] 徐正玉, 杨海燕, 邓居智, 等. 回线源三维地—井瞬变电磁法FDTD数值模拟[J]. 工程地球物理学报, 2015, 12(3):327-332.
[21] Xu Z Y, Yang H Y, Deng J Z, et al. Three-dimensions FDTD numerical simulation on the down-hole TEM field with a loop source[J]. Chinese Journal of Engineering Geophysics, 2015, 12(3): 327-332.
[22] 葛德彪, 闫玉波. 电磁波时域有限差分方法[M].2版. 西安: 西安电子科技大学出版社, 2005.
[22] Ge D B, Yan Y B. Finite-difference time-domain method for electromagnetic waves[M].2 ed. Xi'an: Xidian University Press, 2005.
[23] 孙怀凤, 李貅, 李术才, 等. 考虑关断时间的回线源激发TEM三维时域有限差分正演[J]. 地球物理学报, 2013, 56(3):1049-1064.
[23] Sun H F, Li X, Li S C, et al. Three-dimensional FDTD modeling of TEM excited by loop source considering ramp time[J]. Chinese Journal Geophysics, 2013, 56(3): 1049-1064.
[24] 姚伟华, 王鹏, 李明星, 等. 三分量地—孔瞬变电磁法积水采空区探测试验[J]. 煤田地质与勘探, 2019, 47(5):54-62.
[24] Yao W H, Wang P, Li M X, et al. Experimental study of three-component down-hole TEM for detecting water-filled goaf[J]. Coal Geology & Exploration, 2019, 47(5): 54-62.
[1] 周钟航, 张莹莹. 山峰对电性源地面瞬变电磁响应的影响及校正方法[J]. 物探与化探, 2023, 47(5): 1236-1249.
[2] 吴国培, 张莹莹, 赵华亮, 周钟航, 李医滨. 基于横向约束的中心回线瞬变电磁一维反演[J]. 物探与化探, 2023, 47(4): 1024-1032.
[3] 崔凡, 陈毅, 薛晗鹏, 彭苏萍, 杜云飞. 多源并发下Mur二阶吸收边界和非分裂递归卷积完全匹配层对比研究[J]. 物探与化探, 2022, 46(3): 693-703.
[4] 郭建磊. 轴向各向异性地层瞬变电磁三分量响应特征[J]. 物探与化探, 2022, 46(2): 362-372.
[5] 田郁, 乐彪. 复杂异常体模型下的三维MT倾子正演模拟[J]. 物探与化探, 2021, 45(4): 1021-1029.
[6] 智庆全, 武军杰, 王兴春, 孙怀凤, 杨毅, 张杰, 邓晓红, 陈晓东, 杜利明. 在瞬变电磁三维正演中的应用[J]. 物探与化探, 2021, 45(4): 1037-1042.
[7] 郭楚枫, 张世晖, 刘天佑. 三维磁场有限元—无限元耦合数值模拟[J]. 物探与化探, 2021, 45(3): 726-736.
[8] 顾观文, 武晔, 石砚斌. 基于矢量有限元的大地电磁快速三维正演研究[J]. 物探与化探, 2020, 44(6): 1387-1398.
[9] 马炳镇. 起伏地形下地面瞬变电磁法三维正演数值模拟研究[J]. 物探与化探, 2018, 42(4): 777-784.
[10] 汪科. 高阶时域有限差分法的多偏移距电磁波数值成像[J]. 物探与化探, 2017, 41(3): 489-495.
[11] 许新刚, 徐正玉. 地—井瞬变电磁响应三维时域有限差分模拟[J]. 物探与化探, 2017, 41(3): 496-504.
[12] 任志平, 李貅, 戚志鹏, 赵威, 智庆全, 刘磊. 地面核磁共振三维响应影响因素[J]. 物探与化探, 2017, 41(1): 92-97.
[13] 杨海燕, 徐正玉, 岳建华, 邓居智, 汤洪志, 姜志海. 覆盖层下三维板状体地-井瞬变电磁响应[J]. 物探与化探, 2016, 40(1): 190-196.
[14] 武军杰, 王兴春, 杨毅, 张杰, 邓晓红, 杨启安. 偶极TEM三分量曲线特征分析及应用试验[J]. 物探与化探, 2015, 39(5): 973-977.
[15] 刘成禹, 林毅鹏, 林超群, 刘汗青. 球状孤石在探地雷达探测成果中的表现特征[J]. 物探与化探, 2015, 39(4): 860-866.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com