Please wait a minute...
E-mail Alert Rss
 
物探与化探  2021, Vol. 45 Issue (2): 337-345    DOI: 10.11720/wtyht.2021.1401
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
广西大厂矿田深部成矿预测及成矿机制研究
刘成功1,2, 景建恩1,3(), 金胜1,3, 魏文博1,3
1.中国地质大学(北京) 地球物理与信息技术学院,北京 100083
2.中国石油天然气管道工程有限公司,河北 廊坊 065000
3.中国地质大学(北京)地质过程与矿产资源国家重点实验室,北京 100083
A study of deep metallogenic prediction and metallogenic mechanism of the Dachang deposit in Guangxi
LIU Cheng-Gong1,2, JING Jian-En1,3(), JIN Sheng1,3, WEI Wen-Bo1,3
1. School of Geophysics and Information Technology, China University of Geosciences, Beijing 100083, China
2. China National Petroleum Pipeline Engineering Corporation, Langfang 065000, China
3. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China
全文: PDF(4999 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

大厂矿田作为大型锡多金属矿之一,成矿演化过程复杂,隐伏矿产资源繁多。为了研究大厂矿田笼箱盖岩体外围隐伏矿床的分布位置和成矿机制,对覆盖大厂矿田的音频大地电磁数据进行精细的处理,得到了地下3 km以内的二维电性结构模型。根据电性资料结果,推断了隐伏花岗岩和矿体的位置。花岗岩呈高阻特征,埋深约1.5 km,沿断裂构造成脊状隆起;低阻矿体位于花岗岩顶部中泥盆统地层中,推测矿体发育自底部花岗岩体,表明花岗岩具有明显的控矿作用。根据大厂矿田近铜远锡的分带特点和地表元素异常,以找到矽卡岩型锌铜矿体和锑钨矿床的可能性最大。研究表明,晚白垩世时期,中、下地壳(及少量上地幔)岩浆热液沿NW向基底断裂上涌到地壳浅层泥盆系地层,后经结晶分异与围岩产生成矿作用。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘成功
景建恩
金胜
魏文博
关键词 大厂矿田音频大地电磁测深电阻率成矿预测成矿机制    
Abstract

As one of the large tin-polymetallic deposits in the world, the Dachang deposit has complicated metallogenic mechanism and rich hidden mineral resources. In order to detect the distribution and study mineralization mechanism of the concealed deposits around the cage and cover rock in the Dachang ore district, the authors finely processed the audio magnetoelectromagnetic data covering the Dachang ore district, and obtained a two-dimensional electrical structure model within the depth of 3 km. According to the results of resistivity model, the location of concealed granite and orebody was determined. Granite is characterized by high resistance and is buried at a depth of about 1.5 km, with the formation of ridge uplift along the fault structure. The low-resistivity orebody is located in the middle Devonian strata at the top of granite, so it is inferred that the orebody was developed from the granite at the bottom, which indicates that granite has an obvious ore-controlling effect. According to the zonal characteristics of copper in the near place and tin in the distant place as well as anomalies of metallic elements in the Dachang ore district, it is most possible to find skarn type Zn-Cu deposits and Sb-W deposits. The research shows that, in the late Cretaceous period, the magmatic hydrothermal fluids of the middle and lower crust together with a small amount of upper mantle rose to the shallow Devonian strata of the crust along the basement fault in the NW direction, and then formed mineralization with surrounding rocks through crystallization differentiation.

Key wordsDachang deposit    audio magnetotelluric sounding    resistivity    metallogenic prediction    ore-forming mechanism
收稿日期: 2020-08-11      修回日期: 2020-10-05      出版日期: 2021-04-20
ZTFLH:  P631  
基金资助:国家重点研发计划(2017YFC0602504)
通讯作者: 景建恩
作者简介: 刘成功(1992-),男,研究生,主要研究方向为电磁法数据处理与正反演。
引用本文:   
刘成功, 景建恩, 金胜, 魏文博. 广西大厂矿田深部成矿预测及成矿机制研究[J]. 物探与化探, 2021, 45(2): 337-345.
LIU Cheng-Gong, JING Jian-En, JIN Sheng, WEI Wen-Bo. A study of deep metallogenic prediction and metallogenic mechanism of the Dachang deposit in Guangxi. Geophysical and Geochemical Exploration, 2021, 45(2): 337-345.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2021.1401      或      https://www.wutanyuhuatan.com/CN/Y2021/V45/I2/337
Fig.1  丹池成矿带构造和矿产分布(据徐新煌等[12]修改)
1—断裂;2—背斜;3—矿田;4—花岗岩;5—槽盆界限;6—推测花岗岩体
Fig.2  大厂矿田地质构造及矿产分布(据蔡明海等[16]修改)
Fig.3  部分测点的视电阻率和相位
Fig.4  电性主轴分频统计结果
Fig.5  不同正则化因子反演得到的模型粗糙度与拟合差曲线
Fig.6  大厂矿区电阻率模型
Fig.7  大厂矿田成矿模式(据广西二一五地质队资料修编)
[1] 朱裕生, 梅燕雄, 吕志诚, 等. 隐(盲)矿床的预测找矿和深部勘探[J]. 中国地质, 2007,34(1):43-48.
[1] Zhu Y S, Mei Y X, Lyu Z C, et al. Predictive prospecting and deep exploration of hidden (blind) deposits[J]. Geology of China, 2007,34(1):43-48.
[2] 滕吉文, 杨立强, 姚敬金, 等. 金属矿产资源的深部找矿、勘探与成矿的深层动力过程[J]. 地球物理学进展, 2007,22(2):317-334. http://doi.org/10.3969/j.issn.1004-2903.2007.02.001.
[2] Teng J W, Yang L Q, Yao J J, et al. Deep disscover ore,exploration and exploitation for metal mineral resocrces and its deep dynamical process of formation[J]. Progress in Geophysics, 2007,22(2):317-334. http://doi.org/10.3969/j.issn.1004-2903.2007.02.001.
[3] 吕庆田, 史大年, 汤井田, 等. 长江中下游成矿带及典型矿集区深部结构探Sino-Probe-03年度进展综述[J]. 地球学报, 2011,32(3):257-268. http://doi.org/10.3975/cagsb.2011.03.01.
[3] Lyu Q T, Shi D N, Tang J T, et al. Probing on deep structure of middle and lower reaches of the Yangtze metallogenic belt and typical ore concentration area:a review of annual progress of Sino-Probe-03[J]. Acta Geoscientica Sinica, 2011,32(3):257-268. http://doi.org/10.3975/cagsb.2011.03.01.
[4] 陈毓川, 黄民智, 徐珏, 等. 大厂锡石——硫化物多金属矿带地质特征及成矿系列[J]. 地质学报, 1985,59(3):228-240.
[4] Chen Y C, Huang M Z, Xu J, et al. Geological characteristics of the Dachang cassiterite sulphide deposits and metallogenetic series[J]. Acta Geologica Sinica, 1985,59(3):228-240.
[5] 陈毓川, 李光岑, 黄民智, 等. 大厂锡矿地质[M]. 北京: 地质出版社, 1993.
[5] Chen Y C, Li G C, Huang M Z, et al. Tin Deposits of Dachang [M]. Beijing: Geological Publishing House, 1993.
[6] 韩发, 赵汝松, 沈建忠, 等. 大厂锡多金属矿床地质及成因[M]. 北京: 地质出版社, 1997.
[6] Han F, Zhao R S, Shen J Z, et al. Geology and origin of ores in the Dachang tin-polymetallic ore field[M]. Beijing: Geological Publishing House, 1997.
[7] 范森葵. 广西大厂锡多金属矿田地质特征、矿床模式与成矿预测[D]. 长沙:中南大学, 2011.
[7] Fan S K. The geological characteristics, genesis and metallogenic prediction of Dachang tin-polymetallic ore field,Guangxi[D]. Changsha:Central South University, 2011.
[8] 李春平, 吴德成, 蔡明海. 大厂矿田长坡矿床深部区叠瓦状构造控矿特征及找矿前景分析[J]. 矿产与地质, 2006,20(6):623-627. http://doi.org/10.3969/j.issn.1001-5663.2006.06.009.
[8] Li C P, Wu D C, Cai M H. Control of mineralization of imbricate structure and prospecting perspective in deep part in the Changpo deposit of Dachang ore filed[J]. Mineral Resources and Geology, 2006,20(6):623-627. http://doi.org/10.3969/j.issn.1001-5663.2006.06.009.
[9] 唐龙飞, 谭泽模, 黄敦杰, 等. 大厂矿田硫同位素特征及找矿预测[J]. 有色金属(矿山部分), 2014,66(6):30-35.10. http://doi.org/3969/j.issn.1671-4172.2014.06.008.
[9] Tang L F, Tan Z M, Huang D J, et al. Sulfur isotope characteristics and prospecting prediction of Dachang tin-polymetallic ore field[J]. Nonferrous Metals(Mine Section), 2014,66(6):30-35. http://doi.org/10.3969/j.issn.1671-4172.2014.06.008.
[10] Farquharson C G, Craven J A. Three-dimensional inversion of magnetotelluric data for mineral exploration:An example from the McArthur River uranium deposit,Saskatchewan,Canada [J]. Journal of Applied Geophysics, 2009,68:450-458. http://doi.org/10.1016/j.jappgeo.2008.02.002.
doi: 10.1016/j.jappgeo.2008.02.002
[11] 邓居智, 陈辉, 殷长春, 等. 九瑞矿集区三维电性结构研究及找矿意义[J]. 地球物理学报, 2015,58(12):4465-4477. http://doi.org/CNKI:SUN:DQWX.0.2015-12-012.
[11] Deng J Z, Chen H, Yin C C, et al. Three-dimensional electrical structures and significance for mineral exploration in the Jiujiang-Ruichang District[J]. Chinese Journal of Geophysics, 2015,58(12):4465-4477. http://doi.org/CNKI:SUN:DQWX.0.2015-12-012.
[12] 徐新煌, 蔡建明, 陈洪德, 等. 广西丹池矿带锡多金属矿床地质地球化学特征及成矿作用[J]. 成都地质学院学报, 1991,18(4):12-25.
[12] Xu X H, Cai J M, Chen H D, et al. Geological and geochemical characteristics and mineralization of the tin-polymetallic deposit in the Danchi ore belt, Guangxi[J]. Journal of Chengdu Geology, 1991,18(4):12-25.
[13] 陈洪德, 曾允浮, 李孝全. 丹池晚古生代盆地的沉积和构造演化[J]. 沉积学报, 1989,7(4):85-96. http://doi.org/CNKI:SUN:CJXB.0.1989-04-006.
[13] Chen H D, Zeng Y F, Li X Q. Sedimentary and tectonic evolution of the late Paleozoic danchi basin[J]. Acta Sedigenica Sinica, 1989,7(4):85-96. http://doi.org/CNKI:SUN:CJXB.0.1989-04-006.
[14] 韩发, Hutchinson R W. 大厂锡多金属矿床热液喷气沉积成因的证据——含矿建造及热液沉积岩[J]. 矿床地质, 1989,8(3):25-37. http://doi.org/CNKI:SUN:KCDZ.0.1989-02-003.
[14] Han F, Hutchinson R W. Evidence for exhalative origin for rocks and ores of the Dachang tin polymetallic field: the ore-bearing formation and hydrothermal exhalative sedimentary rocks[J]. Mineral Deposits Beijing, 1989,8(3):25-37. http://doi.org/CNKI:SUN:KCDZ.0.1989-02-003.
[15] 高志斌. 广西丹池地区锡多金属成矿带控矿因素及成矿预测[J]. 地质与勘探, 1988(8):18-24. http://doi.org/CNKI:SUN:DZKT.0.1988-08-002.
[15] Gao Z B. Ore-controlling factors and metallogenic prediction of tin polymetallic metallogenic belt in Danchi, Guangxi [J]. Geology and Prospecting, 1988(8):18-24. http://doi.org/CNKI:SUN:DZKT.0.1988-08-002.
[16] 蔡明海, 梁婷, 吴德成, 等. 广西丹池成矿带构造特征及其控矿作用[J]. 地质与勘探, 2004,40(6):5-10. http://doi.org/10.3969/j.issn.0495-5331.2004.06.002.
[16] Cai M H, Liang T, Wu D C, et al. Structural characteristics and ore-controlling effect of the Danchi metallogenic belt, in Guangxi Province[J]. Geology and Prospecting, 2004,40(6):5-10. http://doi.org/10.3969/j.issn.0495-5331.2004.06.002.
[17] 张小路, 王钟. 广西大厂隐伏岩体重力反演及其地质意义[J]. 桂林冶金地质学院学报, 1990,10(4):417-425. http://doi.org/CNKI:SUN:GLGX.0.1990-04-011.
[17] Zhang X L, Wang Z. The gravity inversion and its geological significance for the hidden granite body in Dachang,Guangxi[J]. Journal of Guilin Institute of Technology, 1990,10(4):417-425. http://doi.org/CNKI:SUN:GLGX.0.1990-04-011.
[18] 张小路, 王钟. 大厂矿田地面磁测资料综合处理研究报告[R]. 桂林:桂林工学院, 2006.
[18] Zhang X L, Wang Z. Research report on comprehensive processing of surface magnetic survey data in Dachang ore field [R]. Guilin:Guilin Institute of Technology, 2006.
[19] 孙德梅, 刘心铸, 彭聪, 等. 应用重磁资料研究广西芒场——大厂成矿带的地质构造及隐伏岩体预测[D]. 北京:中国地质科学院矿床地质研究所, 1994.
[19] Sun D M, Liu X Z, Peng C, et al. Application of gravity and magnetic data to study the geological structure and hidden rock mass prediction of the Mangchang-Dachang metallogenic belt in Guangxi[D]. Beijing:Institute of Mineral Deposits, Chinese Academy of Geological Sciences, 1994.
[20] 蔡明海, 何龙清, 刘国庆, 等. 广西大厂锡矿田侵入岩SHRIMP锫石U-Pb年龄及其意义[J]. 地质论评, 2006,52(3):409-414. http://doi.org/CNKI:SUN:YSXB.0.2011-06-005.
[20] Cai M H, He L Q, Liu G Q, et al. SHRIMP zircon U-Pb dating of the intrusive rocks in the Dachang tin-polymetallic ore field, Guangxi and their geological significance[J]. Geological Review, 2006,52(3):409-414. http://doi.org/CNKI:SUN:YSXB.0.2011-06-005.
[21] Cai M H, Mao J W, Liang T, et al. The origin of the tongkeng-changpo tin deposit, Dachang metal district,Guangxi,China:clues from fluid inclusions and He istope systematics[J]. Miner Deposit, 2007,42:613-626. http://doi.org/10.1007/s00126-007-0127-5.
doi: 10.1007/s00126-007-0127-5
[22] 黄启勋. 南盘江—右江成矿带广西境域深部找矿潜力分析[J]. 南方国土资源, 2015(9):30-32. http://doi.org/CNKI:SUN:GXDZ.0.2015-09-011.
[22] Huang Q X. Analysis of deep prospecting potential in Guangxi region of Nanpanjiang-Youjiang metallogenic belt[J]. Southern Land Resources, 2015(9):30-32. http://doi.org/CNKI:SUN:GXDZ.0.2015-09-011.
[23] Groom R W, Bailey R C. Decomposition of magnetotelluric impedance tensors in the presence of local three-dimensionalgalvanic distortion[J]. Journal of Geophysical Research,1989,94(B2): 1913-1925. http://doi.org/10.1029/JB094iB02p01913.
doi: 10.1029/JB094iB02p01913
[24] 蔡军涛, 陈小斌. 大地电磁资料精细处理和二维反演解释技术研究(二)——反演数据极化模式选择[J]. 地球物理学报, 2010,53(11):2703-2714. http://doi.org/CNKI:SUN:DQWX.0.2010-11-021.
doi: 10.3969/j.issn.0001-5733.2010.11.018
[24] Cai J T, Chen X B. Refined techniques for data processing and two-dimensional inversion in magnetotelluricⅡ:Which data polarization mode should be used in 2D inversion[J]. Chinese Journal of Geophysics, 2010,53(11):2703-2714. http://doi.org/CNKI:SUN:DQWX.0.2010-11-021.
[25] Rodi W, Mackie R L. Nonlinear conjugate gradients algorithm for 2D magnetotelluric inversion[J]. Geophysics, 2001,66(1):174-187. http://doi.org/10.1190/1.1444893.
doi: 10.1190/1.1444893
[26] Hansen P C. Analysis of discrete ill-posed problems by means of the L-curve[J]. SIAM Review, 1992,34(4):561-580. http://doi.org/10.2307/2132628.
doi: 10.1137/1034115
[27] 王钟, 张小路, 罗润林, 等. 大厂锡多金属矿区深边部找矿中的TEM异常特征[J]. 桂林工学院学报, 2009,29(3):303-309. http://doi.org/10.3969/j.issn.1674-9057.2009.03.005.
[27] Wang Z, Zhang X L, Luo R L, et al. Abnormal characteristic of TEM response for prospecting depth and margin area of Tin-polymetallic deposit in Dachang[J]. Journal of Guilin Institute of Technology, 2009,29(3):303-309. http://doi.org/10.3969/j.issn.1674-9057.2009.03.005.
[28] Fu M, Changkakoti A, Krouse H R, et al. An oxygen, hydrogen, sulfur, and carbon isotope study of carbonate-replacement skarn tin deposits of the Dachang tin field, China [J]. European Geological, 1991,86:1683-1703. http://doi.org/10.2113/gsecongeo.86.8.1683.
[29] Fu M, Kwak T A P, Mernagh T P, et al. Fluid inclusion studies of zoning in the Dachang tin-polymetallic ore field,People's Republic of China [J]. European Geological, 1993,88,283-300. http://doi.org/10.2113/gsecongeo.88.2.283.
[30] 范森葵, 伍永田, 王明艳. 广西大厂矿田矿床分布规律与找矿方向[J]. 矿产与地质, 2008,22(6):520-524. http://doi.org/10.3969/j.issn.1001-5663.2008.06.009.
[30] Fan S K, Wu Y T, Wang M Y. Distributing rules of deposits and prospecting direction in Dachang mining area,Guangxi[J]. Mineral Resources and Geology, 2008,22(6):520-524. http://doi.org/10.3969/j.issn.1001-5663.2008.06.009.
[31] 邹锡青, 王思源. 广西芒场锡多金属矿田稳定同位素组成对矿床成因探讨[J]. 广西地质, 1993,6(2):63-69.
[31] Zou X Q, Wang S Y. Discussion on the stable isotopic composition and genesis of Mengchang Tin-polymetallicore field ore deposit in Guangxi[J]. Geology of Guangxi, 1993,6(2):63-69.
[32] 秦德先, 陈健文, 田毓龙. 广西大厂长坡锡矿床地质及成因[J]. 有色金属矿产与勘查, 1998,7(3):146-151. http://doi.org/CNKI:SUN:YSJS.0.1998-03-003.
[32] Qin D X, Chen J W, Tian Y L. Geology and genesis of changpo tin deposit, Dachang, Guangxi[J]. Nonferrous Mineral Exploration, 1998,7(3):146-151. http://doi.org/CNKI:SUN:YSJS.0.1998-03-003.
[33] 成永生, 黄惠明. 广西大厂矿田泥盆系地层地球化学及其成矿指示[J]. 中国有色金属学报, 2013,23(9):2649-2658. http://doi.org/CNKI:SUN:ZYXZ.0.2013-09-037.
[33] Cheng Y S, Huang H M. Geochemical characteristics and mineralization indication of Devonian strata in Dachang ore field, Guangxi[J]. The Chinese Journal of Nonferrous Metals, 2013,23(9):2649-2658. http://doi.org/CNKI:SUN:ZYXZ.0.2013-09-037.
[34] 蔡明海, 梁婷, 吴德成. 广西大厂锡多金属矿田亢马矿床地质特征及成矿时代[J]. 地质学报, 2005,79(2):262-268. http://doi.org/10.3321/j.issn:0001-5717.2005.02.012.
[34] Cai M H, Liang T, Wu D C. Geological characteristics and ore-forming time of the kangma deposit in the Dachang tin-polymetallic ore field, Guangxi[J]. Acta Geologica Sinica, 2005,79(2): 262-268. http://doi.org/10.3321/j.issn:0001-5717.2005.02.012.
[35] 刘成功. 南盘江盆地壳幔电性结构研究[D]. 北京:中国地质大学(北京), 2020.
[35] Liu C G. Studying on the electrical structure of the crust In the Nanpanjiang basin[D]. Beijing: China University of Geosciences(Beijing), 2020.
[36] Guo J, Zhang R Q, Sun W D, et al. Genesis of tin-dominant polymetallic deposits in the Dachang district, South China:Insights from cassiterite U-Pb ages and trace element compositions[J]. Ore Geology Reviews, 2018,95:863-879. http://doi.org/10.1016/j.oregeorev.2018.03.023.
doi: 10.1016/j.oregeorev.2018.03.023
[37] 梁婷, 王登红, 屈文俊, 等. 广西铜坑锡多金属矿黄铁矿的Re-0s同位素组成及成矿物质来源示踪[J]. 地球科学与环境学报, 2009,31(3):230-235. http://doi.org/10.3969/j.issn.1672-6561.2009.03.002.
[37] Liang T, Wang D H, Qu W J, et al. Re-Os isotope composition and source of ore-forming material of pyrite in Tongkeng Tin-pollmetallic[J]. Journal of Earth Sciences and Environment, 2009,31(3): 230-235. http://doi.org/10.3969/j.issn.1672-6561.2009.03.002.
[38] 梁婷, 王登红, 李华芹, 等. 广西大厂石榴石REE含量及Sm-Nd同位素定年[J]. 西北大学学报:自然科学版, 2011,41(4):676-681. http://doi.org/CNKI:SUN:XBDZ.0.2011-04-025.
[38] Liang T, Wang D H, Li H Q, et al. REE geochemistry and Sm—Nd isotope age of garnet from the Dachang,Guangxi[J]. Journal of Northwest University:Natural Science Edition, 2011,41(4): 676-681. http://doi.org/CNKI:SUN:XBDZ.0.2011-04-025.
[39] Jiang S Y, Han F, Shen J Z, et al. Chemical and Rb-Sr,Sm-Nd isotopic systematics of tourmaline from the Dachang Sn-polymetallic ore deposit, Guangxi Province,P.R.China[J]. Chemical Geology, 1999,157(1-2):49-67. http://doi.org/10.1016/s0009-2541(98)00200-9.
doi: 10.1016/S0009-2541(98)00200-9
[40] Wang D H, Chen Y C, Chen W, et al. Dating of the Dachang superlarge tin-polymetallic deposit in Guangxi and its implication for the genesis of the No.100 orebody[J]. Acta Geological Sinica, 2004,78(2):452-458. http://doi.org/10.1111/j.1755-6724.2004.tb00153.x.
[41] Cheng Y S, Hu R Z. Lead isotope composition and constraints on origin of Dafulou ore deposit,Guangxi,China[J]. Transactions of Nonferrous Metals Society of China, 2013,23(6):1766-1773. http://doi.org/10.1016/S1003-6326(13)62659-X.
doi: 10.1016/S1003-6326(13)62659-X
[1] 游希然, 张继锋, 石宇. 基于人工神经网络的瞬变电磁成像方法[J]. 物探与化探, 2023, 47(5): 1206-1214.
[2] 何胜, 王万平, 董高峰, 南秀加, 魏丰丰, 白勇勇. 等值反磁通瞬变电磁法在城市地质调查中的应用[J]. 物探与化探, 2023, 47(5): 1379-1386.
[3] 李开富, 马欢, 张艳, 李威龙, 姜纪沂, 黄斌, 章龙管, 秦孟博. 基于时移电阻率法的平谷局部地区地下水时空特征研究[J]. 物探与化探, 2023, 47(4): 1002-1009.
[4] 杨天春, 胡峰铭, 于熙, 付国红, 李俊, 杨追. 天然电场选频法的响应特性分析与应用[J]. 物探与化探, 2023, 47(4): 1010-1017.
[5] 张丽华, 潘保芝, 单刚义, 阿茹罕, 张鹏济. 基于复电阻率—核磁联测实验的三水模型新形式[J]. 物探与化探, 2023, 47(4): 1018-1023.
[6] 丁志军, 罗维斌, 连伟章, 张星, 何海颦. 基于两步变异差分进化算法的激电测深一维反演[J]. 物探与化探, 2023, 47(4): 1033-1039.
[7] 邰文星, 杨成富, 靳晓野, 邵云彬, 刘光富, 赵平, 王泽鹏, 谭礼金. 多维度化探异常研究在黔西南者相金矿床深部成矿预测中的应用[J]. 物探与化探, 2023, 47(4): 856-867.
[8] 陈伟, 谭友, 曹正端, 廖志权, 张宁发, 傅海晖. 构造原生晕在攻深找盲中的应用——以赣南银坑牛形坝铅锌金银矿床为例[J]. 物探与化探, 2023, 47(4): 892-905.
[9] 陈海文, 叶益信, 杨烁健, 覃金生. 基于非结构有限元的电阻率超前探测中旁侧异常影响特征研究[J]. 物探与化探, 2023, 47(4): 975-985.
[10] 王英梅, 焦雯泽, 刘生浩, 王茜, 宋瀚宇. 含天然气水合物沉积物的电阻率特性及阿尔奇公式的应用进展[J]. 物探与化探, 2023, 47(3): 782-793.
[11] 许艳, 张太平, 谢伟, 张红军, 王强, 王薇, 郭朋, 王奎峰, 殷继广, 张瑞华. 直流电阻率法在黄河下游地区地下咸水分布研究中的应用[J]. 物探与化探, 2023, 47(2): 496-503.
[12] 苏永军, 曹占宁, 赵更新, 胡祥云, 范剑, 张竞, 范翠松, 黄忠峰. 高密度电阻率法在雄安新区浅表古河道精细化探测中的应用研究[J]. 物探与化探, 2023, 47(1): 272-278.
[13] 蒋首进, 陈永凌, 李怀远, 胡俊峰. 藏东南冻错曲塘布段冰碛物电阻率特征[J]. 物探与化探, 2023, 47(1): 73-80.
[14] 孙海川. 兰州新区西部恐龙园区块地热地质条件分析[J]. 物探与化探, 2022, 46(6): 1411-1418.
[15] 王智, 王程, 方思南. 基于非结构化有限元的三维井地电阻率法约束反演[J]. 物探与化探, 2022, 46(6): 1431-1443.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com