Please wait a minute...
E-mail Alert Rss
 
物探与化探  2021, Vol. 45 Issue (2): 346-354    DOI: 10.11720/wtyht.2021.2576
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
综合物探方法在广西罗城县活动断裂鉴定中的应用
吴教兵1(), 黎峻良1(), 江兰2, 陆俊宏1, 潘黎黎3, 韦王秋1
1.广西壮族自治区地震局,广西 南宁 530022
2.深圳市龙岗地质勘查局,广东 深圳 518100
3.广东省珠海工程勘察院,广东 珠海 519002
The application of comprehensive geophysical method to the identification of active faults in Luocheng County,Guangxi
WU Jiao-Bing1(), LI Jun-Liang1(), JIANG Lan2, LU Jun-Hong1, PAN Li-Li3, WEI Wang-Qiu1
1. Earthquake Administration of the Guangxi Zhuang Autonomous Region,Nanning 530022,China
2. Shenzhen Longgang Geological Exploration Bureau,Shenzhen 518100,China
3. Zhuhai Engineering Exploration Institute of Guangdong,Zhuhai 519002,China
全文: PDF(6119 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

城市活动断层探测在城市发展建设过程中和保障人民生命财产安全方面起到重要作用。本文以鉴定罗城断裂和上天桥—寺门断裂活动性为目的,在地震地质调查确定其断裂的几何学、运动学和年代学的基础上,选择第四系覆盖断裂最有可能活动的地段,重点采用高密度电法和地震映像方法来探测断裂在隐伏地段的具体位置,通过排钻验证,以及揭露其断裂与第四纪覆盖层之间的错断关系,来确定其断裂最新活动年代。结果表明,高密度电法和地震映像综合物探方法准确探测到了罗城断裂和上天桥—寺门断裂在隐伏地段的位置,且钻孔岩心中断裂面、断裂擦痕、断裂碎裂岩和构造角砾岩等发育,但断裂未错断第四系覆盖层,从而确定其断裂活动年代为早更新世。根据相关规范要求,罗城断裂和上天桥—寺门断裂全新世以来不活动,罗城县的建设规划可不采取避让措施,该鉴定结果为今后罗城县的工程建设提供了安全保障。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴教兵
黎峻良
江兰
陆俊宏
潘黎黎
韦王秋
关键词 活动断裂地震地质调查高密度电法地震映像排钻    
Abstract

Urban active fault detection plays an important role in the process of urban development and construction and also in ensuring the safety of people's lives and property.In this paper,with the purpose of identifying the activity of Luocheng fault and Shangtianqiao-Simen fault and on the basis of geometry,kinematics and chronology of the fault determined by the seismic geological survey,the authors detected the specific location of the fault that lies at the most likely active segment and is covered by the Quaternary sediments by high-density electrical method and seismic imaging method,which was then verified by drilling arrangement.In addition,the latest active age of the fault was determined through the offset relationship between the fault and the Quaternary overburden.The results show that the location of Luocheng fault and Shangtianqiao-Simen fault in the concealed segment can be accurately detected by the high-density electrical methods and seismic mapping method,and the fault activity age is determined to be the early Pleistocene based on the fact that fracture surface,scratch,cataclasite and structural brecciaa are developed,but the fault does not cut the Quaternary overburden.According to the requirements of relevant specifications,Luocheng fault and Shangtianqiao-Simen fault have not been active since the late Pleistocene,so the construction planning of Luocheng county does not need to take avoidance measures,and the appraisal results provide safety guarantee for the project construction of Luocheng County in the future.

Key wordsactive fault    seismic geological survey    high density electrical method    seismic imaging    drilling arrangement
收稿日期: 2019-12-13      修回日期: 2020-11-22      出版日期: 2021-04-20
ZTFLH:  P631.4  
基金资助:广西科学研究与技术开发计划项目(桂科AB17195022);广西科学研究与技术开发计划项目(桂科AB18126040)
通讯作者: 黎峻良
作者简介: 吴教兵(1984-),男,工程师,主要从事活动断层探测、地震监测与研究工作。Email: wujiaobing@163.com
引用本文:   
吴教兵, 黎峻良, 江兰, 陆俊宏, 潘黎黎, 韦王秋. 综合物探方法在广西罗城县活动断裂鉴定中的应用[J]. 物探与化探, 2021, 45(2): 346-354.
WU Jiao-Bing, LI Jun-Liang, JIANG Lan, LU Jun-Hong, PAN Li-Li, WEI Wang-Qiu. The application of comprehensive geophysical method to the identification of active faults in Luocheng County,Guangxi. Geophysical and Geochemical Exploration, 2021, 45(2): 346-354.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2021.2576      或      https://www.wutanyuhuatan.com/CN/Y2021/V45/I2/346
Fig.1  罗城县地震构造分布
1—第四系;2—三叠系;3—二叠系;4—石炭系;5—泥盆系;6—震旦系;7—板溪群;8—岩浆岩;9—地震;10—断裂带;11—隐伏断裂带;12—物探测线;13—地质调查点;14—排钻
Fig.2  罗城断裂野外露头(a)、构造剖面图(b)和发育NW向水平擦痕和阶步(c)
1—构造破碎带;2—灰岩;3—断裂带
Fig.3  上天桥—寺门断裂南段野外露头(a)、构造剖面图(b)和构造角砾岩(c)
1—残积黏土;2—灰岩;3—角砾岩;4—断裂带
Fig.4  上天桥——寺门断裂北段野外露头(a)、构造剖面图(b)和断裂面(c)
1—残积黏土;2—灰岩;3—角砾岩;4—破碎带;5—断裂带
Fig.5  干扰波调查
Fig.6  A-A'测线物探成果
a—极距AO=22.5m的联合剖面曲线;b—极距AO=52.5m的联合剖面曲线;c—视电阻率等值线;d—地震映像波形
Fig.7  B-B'测线物探成果
a—极距AO=22.5m的联合剖面曲线;b—极距AO=52.5m的联合剖面曲线;c—视电阻率等值线;d—地震映像波形
Fig.8  C-C'测线物探成果
a—极距AO=35m的联合剖面曲线;b—极距AO=85m的联合剖面曲线;c—视电阻率等值线;d—地震映像波形
Fig.9  D-D'测线物探成果
a—极距AO=22.5m的联合剖面曲线;b—极距AO=52.5m的联合剖面曲线;c—视电阻率等值线;d—地震映像波形
Fig.10  E-E'测线物探成果
a—极距AO=35m的联合剖面曲线;b—极距AO=85m的联合剖面曲线;c—视电阻率等值线;d—地震映像波形
Fig.11  各测线钻探剖面
a—A-A'测线;b—C-C'测线;c—D-D'测线;d—E-E'测线;1—耕植土;2—黏土;3—粉质黏土;4—粉土;5—含砾黏土;6—白云岩;7—灰岩;8—水充填的溶洞;9—黏土充填的溶洞;10—构造碎裂岩;11—构造角砾岩;12—断裂;13—钻孔
Fig.12  各测线的钻探岩心
a—A-A'测线钻探揭露断裂面和构造碎裂岩;b—C-C'测线钻探揭露断裂擦痕面和构造角砾岩;c—D-D'测线钻探揭露断裂面和断层泥;d—E-E'测线钻探揭露断裂面和构造裂隙
[1] 活动断层探测(GB/T 36072-2018)[S]. 北京:中华人民共和国国家质量监督检验检疫总局, 2018: 1-3.
[1] Surveying and prospecting of active fault(GB/T 36072-2018)[S]. Beijing:General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, 2018: 1-3.
[2] 徐锡伟, 郭婷婷, 刘少卓, 等. 活动断层避让相关问题的讨论[J]. 地震地质, 2016,38(3):477-502.
[2] Xu X W, Guo T T, Liu S Z, et al. Discussion on issues associated with setback distance from active fault[J]. Seismology and Geology, 2016,38(3):477-502.
[3] 雷启云, 柴炽章, 孟广魁, 等. 基于构造活动历史的活断层工程避让研究[J]. 工程地质学报, 2015,23(1):161-169.
[3] Lei Q Y, Chai C Z, Meng G K, et al. Tectonic activity history based method for engineering safety distance to active fault[J]. Journal of Engineering Geology, 2015,23(1):161-169.
[4] 全国中小学校舍安全工程地震工作指南[S]. 北京:中国地震局, 2009: 1-3.
[4] Earthquake work guide for safety engineering of primary and secondary school buildings in China[S]. Beijing:China Earthquake Administration, 2009: 1-3.
[5] 岩土工程勘察规范(GB50021-2001)[S]. 北京: 中国建筑工业出版社, 2009: 66-67.
[5] Code for investigation of geotechnical engineering(GB50021-2001)[S]. Beijing: China Architecture & Building Press, 2009: 66-67.
[6] 鲁恒新. 基于国产高分辨率遥感影像精细解译哈思山南麓活动断层[D]. 北京:中国地震局地震预测研究所, 2016.
[6] Lu H X. Interpretation of South-Hasi-Mountain active fault zone based on domestic high resolution remote sense image[D]. Beijing:Institute of Earthquake Prediction,China Earthquake Administration, 2016.
[7] 张璇, 张元生, 张丽峰. 卫星热红外遥感在地震预测和断层活动中的应用研究进展[J]. 地质论评, 2016,62(2):381-388.
[7] Zhang X, Zhang Y S, Zhang L F. Research progress of satellite thermal infrared remote sensing in earthquake prediction and fault activity[J]. Geological Review, 2016,62(2):381-388.
[8] 张叶鹏, 王红, 黄朝宇, 等. 浅层地震勘探在工程场地地震安全性评价近场工作中的应用[J]. 物探与化探, 2004,28(5):463-466.
[8] Zhang Y P, Wang H, Huang C Y, et al. The application of shallow seismic exploration to the Near-site researches on the seismic safety evaluation of the construction sites[J]. Geophysical and Geochemical Exploration, 2004,28(5):463-466.
[9] 何正勤, 潘华, 胡刚, 等. 核电厂址隐伏断裂探测中的地震勘探方法研究[J]. 地球物理学报, 2010,53(2):326-334.
[9] He Z Q, Pan H, Hu G, et al. Study on the seismic exploration method to detect buried fault in the site of Nuclear Power Plant[J]. Chinese Journal of Geophysics, 2010,53(2):326-334.
[10] 王银, 孟广魁, 柴炽章, 等. 隐伏活断层探测中的精定位技术——以银川盆地芦花台断裂为例[J]. 地震地质, 2015,37(1):256-268.
[10] Wang Y, Meng G K, Chai Z Z, et al. The accurate location methods for buried active exploration:an example of Luhuatai faults in Yinchuan grben[J]. Seismology and Geology, 2015,37(1):256-268.
[11] 张慧利, 张琳, 夏媛媛. 浅层地震勘探在城市活断层探测与危险性评价中的应用[J]. 工程地球物理学报, 2014,11(1):85-88.
[11] Zhang H L, Zhang L, Xia Y Y. The application of shallow seismic prospecting methods to urban active fault detection and risk assessment[J]. Chinese Journal of Engineering Geophysics, 2014,11(1):85-88.
[12] 安好收, 罗传根. 浅层纵横波联合勘探在活动断层探测中的应用[J]. 物探与化探, 2019,43(3):543-550.
[12] An H S, Luo C G. The application of combined exploration of shallow P-wave and S-wave to active fault detection[J]. Geophysical and Geochemical Exploration, 2019,43(3):543-550.
[13] 徐建宇. 地震方法在城市浅覆盖区活断层调查中的应用[J]. 物探与化探, 2016,46(6):1104-1107.
[13] Xu J Y. The application of seismic method to the investigation of active faults in urban shallow Quaternary sediment area[J]. Geophysical and Geochemical Exploration, 2016,46(6):1104-1107.
[14] 薛建, 黄航, 张良怀. 探地雷达方法探测与评价长春市活动断层[J]. 物探与化探, 2009,33(1):34-66.
[14] Xue J, Huang H, Zhang L H. The application of the gprmethod to detecting and estimating active faults in Changchun[J]. Geophysical and Geochemical Exploration, 2009,33(1):34-66.
[15] 吴教兵, 高鹏飞. 高密度电法和地震映像在隐伏断裂中的应用——以玉林天然气支线项目为例[J]. 工程地球物理学报, 2016,13(1):94-98.
[15] Wu J B, Gao P F. The application of high density resistivity method and seismic imaging method to concealed fault-Taking the Yulin gas line project as an example[J]. Chinese Journal of Engineering Geophysics, 2016,13(1):94-98.
[16] 林承灏, 王雷, 黎哲君, 等. 电成像与浅层地震联合在浅覆盖区隐伏断层探测中的应用[J]. 地质与勘探, 2017,53(1):133-140.
[16] Lin C H, Wang L, Li Z J, et al. Application of collocated resistivity tomography and shallow seismic method to the detection of concealed faults in areas with thin covers[J]. Geology and Exploration, 2017,53(1):133-140.
[17] 吴教兵, 高鹏飞, 陆俊宏, 等. 综合物探方法在广西柳州隐伏断裂探测中的应用[J]. 地质与勘探, 2019,55(4):1026-1035.
[17] Wu J B, Gao P F, Lu J H, et al. Application of multiple geophysical methods to the detection of buried faults in Liuzhou,Guangxi[J]. Geology and Exploration, 2019,55(4):1026-1035.
[18] 李细光, 李冰溯, 潘黎黎, 等. 广西灵山1936年6(3/4)级地震地表破裂带新发现[J]. 地震地质, 2017,39(4):69-78.
[18] Li X G, Li B S, Pan L L, et al. A new finding of surface rupture zones associated with 1936 Lingshan M6(3/4) earthquake,Guangxi,China[J]. Seismology and Geology, 2017,39(4):69-78.
[19] 程志平. 电法勘探教程[M]. 北京: 冶金工业出版社, 2007: 3-20.
[19] Cheng Z P. Course of electric exploration[M]. Beijing: Metallurgical Industry Press, 2007: 3-20.
[20] 单娜林, 程志平, 刘云祯. 工程地震勘探[M]. 北京: 冶金工业出版社, 2006: 146-154.
[20] Shan N L, Cheng Z P, Liu Y Z. Engineering seismic exploration[M]. Beijing: Metallurgical Industry Press, 2006: 146-154.
[21] 单娜琳, 程志平. 地震映像方法及其应用[J]. 桂林工学院学报, 2003,23(1):36-40.
[21] Shan N L, Cheng Z P. Seismic imaging profiling method and application[J]. Journal of Guilin University of Technology, 2003,23(1):36-40.
[1] 周建兵, 罗锐恒, 贺昌坤, 潘晓东, 张绍敏, 彭聪. 文山小河尾水库岩溶含水渗漏通道的地球物理新证据[J]. 物探与化探, 2023, 47(3): 707-717.
[2] 覃剑文, 姜晓腾, 谢贵城, 孙汉武, 何流, 孙怀凤. 基于高密度电法的城市复杂环境岩溶探查研究——以贵港市北环新村为例[J]. 物探与化探, 2023, 47(2): 530-539.
[3] 马国凯, 魏定勇, 刘爱友, 林万顺. 浅层地震技术在南水北调中线工程PCCP管道缺陷探测中的应用[J]. 物探与化探, 2022, 46(2): 525-530.
[4] 王强, 田野, 刘欢, 朱春光, 白超琨, 郝森. 综合物探方法在煤矿采空区探测中的应用[J]. 物探与化探, 2022, 46(2): 531-536.
[5] 王亮, 胡从亮, 张嘉玮, 陈国勇, 张美雪, 杨武, 张应文. 贵州区域地热成因探讨[J]. 物探与化探, 2022, 46(2): 304-315.
[6] 丁卫忠, 孙夫文, 李建华, 郑采君, 林品荣, 齐方帅. 城市地下空间探测多参数并行高密度电法系统研制[J]. 物探与化探, 2021, 45(6): 1448-1454.
[7] 陈学群, 李成光, 田婵娟, 刘丹, 辛光明, 管清花. 高密度电阻率法在咸水入侵监测中的应用[J]. 物探与化探, 2021, 45(5): 1347-1353.
[8] 苏宝, 刘晓丽, 卫晓波, 高歌, 王云鹏. 井间超高密度电阻率法溶洞探测研究[J]. 物探与化探, 2021, 45(5): 1354-1358.
[9] 危志峰, 陈后扬, 吴西全. 广域电磁法在宜春某地地热勘查中的应用[J]. 物探与化探, 2020, 44(5): 1009-1018.
[10] 苏永军, 范翠松, 赵更新, 张国利, 刘宏伟, 孙大鹏. 综合电法在探测海水入侵界面中的研究与应用——以莱州湾地区为例[J]. 物探与化探, 2020, 44(3): 704-708.
[11] 王战军. 电法在追索水库坝区地下暗河中的应用[J]. 物探与化探, 2019, 43(5): 1157-1162.
[12] 孙大利, 李貅, 齐彦福, 孙乃泉, 李文忠, 周建美, 孙卫民. 基于非结构网格三维有限元堤坝隐患时移特征分析[J]. 物探与化探, 2019, 43(4): 804-814.
[13] 朱德兵, 刘成君, 章游斌, 周光建, 裴俊勇. 近地表地震映像剖面静校正探析[J]. 物探与化探, 2018, 42(1): 206-212.
[14] 曹煜, 刘盛东, 唐润秋, 陈兴海, 戚俊, 周官群, 王宗涛. 电法并行采集AM排列推导ABM排列技术研究[J]. 物探与化探, 2016, 40(6): 1157-1165.
[15] 李俊杰, 何建设, 严家斌, 荣鑫, 李阳. 超高密度电阻率法在隐伏断层探测中的应用[J]. 物探与化探, 2016, 40(3): 624-628.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com