Please wait a minute...
E-mail Alert Rss
 
物探与化探  2020, Vol. 44 Issue (5): 1233-1238    DOI: 10.11720/wtyht.2020.1457
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
岩浆岩地震波阻抗反演与厚度预测
李江(), 智敏, 朱书阶
中煤科工集团西安研究院有限公司,陕西 西安 710077
The fictitious P-impedance inversion and thickness prediction of magmatic rock
LI Jiang(), ZHI Min, ZHU Shu-Jie
Xi'an Research Institute of China Coal Science and Industry Group,Xi'an 710077,China
全文: PDF(4073 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

岩浆岩的侵入对煤层有较大的破坏作用,严重影响煤矿的安全开采。高密度三维地震数据具有宽频带、宽方位和高密度采样的优势,包含着更丰富的构造和岩性信息,为岩浆岩的识别和预测奠定了基础。通过测井曲线综合对比分析,常规声波、密度等测井曲线对岩浆岩敏感性较差,无法识别和准确划分岩浆岩,电阻率和自然伽马等测井对岩浆岩反映敏感,可用于岩浆岩层位划分;以敏感曲线的层位划分结果为约束,对声波和密度曲线进行重构,获得对岩浆岩反映敏感的伪测井曲线,基于模型进行波阻抗反演,将地震信息转化为岩性信息,精细雕刻岩浆岩的空间展布规律,实现岩浆岩侵蚀范围和厚度预测。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李江
智敏
朱书阶
关键词 岩浆岩煤田地震勘探测井曲线反演    
Abstract

The erosion of magmatic rock has a great destructive effect on coal seam and seriously affects the safety of coal mining.High-density three-dimensional seismic data have the advantages of wide band,wide azimuth and high-density sampling,and contains abundant structural and lithological information,which lays a foundation for the identification and prediction of magmatic rocks.A comprehensive comparison of logging curves shows that conventional logging curves has many shortcomings,for example,acoustic wave and density are less sensitive to magmatic rocks,and it is impossible for them to identify and accurately classify magmatic rocks.Logs such as resistivity and natural gamma are sensitive to magmatic rocks,and can be used to classify magmatic strata.The acoustic wave and density curves are reconstructed based on the horizon division results of the sensitive curve,and then curves sensitive to magmatic rocks are obtained.Based on the seismic impedance inversion,the seismic information is transformed into lithological information,so the existing of magmatic rocks is clear and the erosion range and thickness can be predicted.

Key wordsmagmatic rocks    coalfield    seismic prospecting    logging    seismic inversion
收稿日期: 2019-07-23      出版日期: 2020-10-26
:  P631.4  
基金资助:中煤科工集团西安研究院有限公司科技创新基金项目“岩浆岩地震识别与预测技术研究——以淮北矿区为例”(2019XAYQN03)
作者简介: 李江(1985-),男,博士,主要从事地震勘探数据处理和解释的研究工作。Email: 2739594195@qq.com
引用本文:   
李江, 智敏, 朱书阶. 岩浆岩地震波阻抗反演与厚度预测[J]. 物探与化探, 2020, 44(5): 1233-1238.
LI Jiang, ZHI Min, ZHU Shu-Jie. The fictitious P-impedance inversion and thickness prediction of magmatic rock. Geophysical and Geochemical Exploration, 2020, 44(5): 1233-1238.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2020.1457      或      https://www.wutanyuhuatan.com/CN/Y2020/V44/I5/1233
Fig.1  岩浆岩在地震剖面上的特征
a—常规三维地震勘探;b—高密度三维地震勘探
Fig.2  研究区岩浆岩测井曲线特征
Fig.3  真实测井曲线与伪测井曲线及其波阻抗对比
a—原始声波时差曲线;b—原始密度曲线;c—重构伪声波(红色)和密度曲线(绿色);d—原始波阻抗(黑色)与伪曲线计算的波阻抗(红色)
Fig.4  过井地震剖面及反演效果
a—过井地震剖面;b—原始测井曲线反演剖面;c—伪测井曲线反演剖面
Fig.5  岩浆岩厚度预测平面分布
[1] 汪雷, 汤达祯, 许浩, 等. 岩浆活动对西山煤田煤储层物性的差异改造特征[J]. 煤炭学报, 2015,40(8):1900-1910.
[1] Wang L, Tang D Z, Xu H, et al. Magmatism effect on different transformation characteristics of coal reservoirs physical properties in Xishan coalfield[J]. Journal of China Coal Society, 2015,40(8):1900-1910.
[2] 王亮, 程龙彪, 蔡春城, 等. 岩浆热事件对煤层变质程度和吸附—解吸特性的影响[J]. 煤炭学报, 2014,39(7):1275-1282.
[2] Wang L, Cheng L B, Cai C C, et al. Influence of thermal events of magma intrusion on coal seams metamorphic grade and adsorption and desorption characteristics[J]. Journal of China Coal Society, 2014,39(7):1275-1282.
[3] 李军, 张军华, 韩双, 等. 火成岩储层勘探现状、基本特征及预测技术综述[J]. 石油物理勘探, 2015,50(2):382-392.
[3] Li J, Zhang J H, Han S, et al. A review:exploration status,basic characteristics and prediction approaches of igneous rock reservoir[J]. OGP, 2015,50(2):382-392.
[4] 蔡春城, 祝琳, 姜奎, 等. 不同产状侵入岩浆岩对煤体的热变质作用研究[J]. 煤矿安全, 2014,45(9):4-8.
[4] Cai C C, Zhu L, Jiang K, et al. Research on thermal metamorphism of coal with intrusive magmatic rock of different attitudes[J]. Safety in Coal Mines, 2014,45(9):4-8.
[5] Jun S, Li Y F, Wei W, et al. On vertical resolution of seismic acquisition geometries in complex 3D media[J]. Geophysics, 2017,82(6):75-87.
[6] 程建远, 聂爱兰, 张鹏. 煤炭物探技术的主要进展及发展趋势[J]. 煤田地质与勘探, 2016,44(6):136-141.
[6] Cheng J Y, Nie A L, Zhang P. Outstanding progress and development trend of coal geophysics[J]. Coal Geology & Exploration, 2016,44(6):136-141.
[7] 王琦. 全数字高密度三维地震勘探技术在淮北矿区的应用[J]. 煤田地质与勘探, 2018,46(s1):41-45.
[7] Wang Q. Application of full digital high density 3D seismic exploration technology in Huaibei mining area[J]. Coal Geology & Exploration, 2018,46(s1):41-45.
[8] 韩波, 石岩俊. 火成岩相控多属性储层预测方法——以惠民凹陷商河地区沙三中亚段火成岩为例[J]. 长江大学学报:自然科学版, 2017,14(7):31-37.
[8] Han B, Shi Y J. Prediction method of igneous rock phase-controlled multi-attribute reservoir: a case study of igneous rock in Shasanzhong section of Shanghe area, Huimin sag[J]. Journal of Yangtze University:Natural Science Edition, 2017,14(7):31-37.
[9] 杨晓光, 刘震, 李自远, 等. 利用分频重构技术预测古火山——以准噶尔盆地木垒凹陷为例[J]. 石油地球物理勘探, 2018,53(4):805-816.
[9] Yang X G, Liu Z, Li Z Y, et al. Ancient volcanic prediction based on frequency division reconstruction in Mulei Sag,Junggar Basin[J]. OGP, 2018,53(4):805-816.
[10] 谢会文, 许永忠, 郑多明, 等. 火成岩速度反演及三维速度场建立的关键技术及效果分析[J]. 物探与化探, 2013,37(6):1071-1079.
[10] Xie H W, Xu Y Z, Zheng D M, et al. An analysis of the key techniques and effects of the igneous rock velocity inversion and the establishment of 3D velocity field[J]. Geophysical and Geochemical Exploration, 2013,37(6):1071-1079.
[11] 赵淑琴, 顾国忠, 韩宏伟, 等. 纹理属性在火山岩储层预测中的应用[J]. 石油地球物理勘探, 2017,52(s1):152-155,168.
[11] Zhao S Q, Gu G Z, Han H W, et al. Volcanic reservoir prediction with texture attribute[J]. OGP, 2017,52(s1):152-155,168.
[12] 陈德元, 张保卫, 岳航羽, 等. 基于特征曲线构建的地质统计反演在薄砂体预测中的应用[J]. 物探与化探, 2018,42(5):999-1005.
[12] Chen D Y, Zhang B W, Yue H Y, et al. The application of geostatistical inversion based on characteristic curve structuring technology to thin sand body reservoir prediction[J]. Geophysical and Geochemical Exploration, 2018,42(5):999-1005.
[13] Bosch M, Mukerji T, Gonzalez E F. Seismic inversion for reservoir properties combining statistical rock physics and geostatistics:A review[J]. Geophysics, 2010,75(5):75A165-75A176.
doi: 10.1190/1.3478209
[14] 刘宗利, 王祝文, 刘菁华, 等. 辽河盆地东部凹陷中基性火成岩测井曲线特征研究[J]. 石油物探, 2015,54(6):787-795.
[14] Liu Z L, Wang Z W, Liu Q H, et al. The logging characteristics of the intermediate and basic igneous rock from the Eastern Depression of Liaohe Basin[J]. Geophysical Prospecting for Petroleum, 2015,54(6):787-795.
[15] 信鹏飞, 彭苏萍, 卢永旭, 等. 煤层气定性及定量预测的拟密度反演方法[J]. 煤矿安全, 2017,48(3):156-159.
[15] Xin P F, Peng S P, Lu Y X, et al. Simulative density inversion method for quantitative forecasting of coal bed methane[J]. Safety in Coal Mines, 2017,48(3):156-159.
[16] 陈海云, 林春明, 张云银, 等. 济阳拗陷新生代火成岩的识别[J]. 石油地球物理勘探, 2005,40(6):663-669.
[16] Chen H Y, Lin C M, Zhang Y Y, et al. Identification of Cenozoic igneous rocks of Jiyang depression[J]. OGP, 2005,40(6):663-669.
[17] 刘淑华, 谢占安, 刘建武, 等. 叠前地震多属性反演在南堡油田火成岩研究中的应用[J]. 石油物探, 2008,47(1):83-88.
[17] Liu S H, Xie Z A, Liu J W, et al. Application of pre-stack multi-attribute inversion technology on igneous rock investigation in Nanpu oilfield[J]. Geophysical Prospecting for Petroleum, 2008,47(1):83-88.
[18] 彭苏萍, 杜文凤, 殷裁云, 等. 高丰度煤层气富集区地球物理识别[J]. 煤炭学报, 2014,39(8):1398-1403.
[18] Peng S P, Du W F, Yin C Y, et al. Coal-bed gas content prediction based on AVO inversion[J]. Journal of China Coal Society, 2014,39(8):1398-1403.
[19] 章雄, 张本健, 梁虹, 等. 波形指示叠前地震反演方法在致密含油薄砂层预测中的应用[J]. 物探与化探, 2018,42(3):545-554.
[19] Zhang X, Zhang B J, Liang H, et al. The application of pre-stack inversion based on seismic waveform indicator to the prediction of compact and thin oil-bearing sand layer[J]. Geophysical and Geochemical Exploration, 2018,42(3):545-554.
[20] 李红梅. 弹性参数直接反演技术在储层流体识别中的应用[J]. 物探与化探, 2014,38(5):970-975.
[20] Li H M. The application of elastic parameters direct inversion to reservoir fluid identification[J]. Geophysical and Geochemical Exploration, 2014,38(5):970-975.
[1] 冯旭亮, 魏泽坤. 基于界面反演增强的位场边缘识别方法[J]. 物探与化探, 2022, 46(1): 130-140.
[2] 肖关华, 张伟, 陈恒春, 卓武, 王艳君, 任丽莹. 浅层地震技术在济南地下空间探测中的应用[J]. 物探与化探, 2022, 46(1): 96-103.
[3] 黄远生, 王彦国, 罗潇. 基于归一化磁源强度垂向差分的磁源参数快速估计方法[J]. 物探与化探, 2021, 45(6): 1588-1596.
[4] 何可, 郭明, 胡章荣, 易国财, 王仕兴. 半航空瞬变电磁L1范数自适应正则化反演[J]. 物探与化探, 2021, 45(5): 1338-1346.
[5] 肖高强, 向龙洲, 代达龙, 高晓红, 宗庆霞. 花岗质岩浆岩土壤重金属地球化学特征及生态风险评价——以云南盈江旧城—姐冒地区为例[J]. 物探与化探, 2021, 45(5): 1135-1146.
[6] 郭培虹, 冯治汉, 王万银, 唐小平, 刘生荣. 北秦岭华阳川地区重磁三维反演及岩浆岩特征研究[J]. 物探与化探, 2021, 45(5): 1217-1225.
[7] 余永鹏, 闫照涛, 毛兴军, 杨彦成, 马永祥, 黄鹏程, 陆爱国, 张广兵. 巨厚新生界覆盖区煤炭勘查中的电震综合方法应用[J]. 物探与化探, 2021, 45(5): 1231-1238.
[8] 雍凡, 刘子龙, 蒋正中, 罗水余, 刘建生. 城市三维地震资料处理浅层成像关键技术[J]. 物探与化探, 2021, 45(5): 1266-1274.
[9] 刘鸿洲, 王孟华, 张浩, 彭玲丽, 李雯, 张杰, 赵智鹏, 伍泽荆. 基于分频构形反演方法的河道砂精准预测——以华北冀中探区赵皇庄地区为例[J]. 物探与化探, 2021, 45(5): 1311-1319.
[10] 邢涛, 袁伟, 李建慧. 回线源瞬变电磁法的一维Occam反演[J]. 物探与化探, 2021, 45(5): 1320-1328.
[11] 刘辉, 李静, 曾昭发, 王天琪. 基于贝叶斯理论面波频散曲线随机反演[J]. 物探与化探, 2021, 45(4): 951-960.
[12] 马良涛, 范廷恩, 许学良, 董建华, 蔡文涛. 油气检测多技术联合在B油田的应用研究[J]. 物探与化探, 2021, 45(4): 961-969.
[13] 谢兴隆, 马雪梅, 龙慧, 李秋辰, 郭淑君, 程正璞. 基于可控震源的中浅部地震勘探参数选择[J]. 物探与化探, 2021, 45(4): 1004-1013.
[14] 张鹏飞, 张世晖. 西湖凹陷平湖组砂泥岩岩性神经网络地震预测[J]. 物探与化探, 2021, 45(4): 1014-1020.
[15] 李瑞友, 张淮清, 吴昭. 基于在线惯序极限学习机的瞬变电磁非线性反演[J]. 物探与化探, 2021, 45(4): 1048-1054.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com