Please wait a minute...
E-mail Alert Rss
 
物探与化探  2025, Vol. 49 Issue (6): 1459-1466    DOI: 10.11720/wtyht.2025.1407
  工程地质调查 本期目录 | 过刊浏览 | 高级检索 |
地—井直流电法在路基岩溶勘探中的应用
余小晴1(), 温金豪2()
1.江西赣粤高速公路股份有限公司, 江西 南昌 330006
2.东华理工大学 地球物理与空间探测学院, 江西 南昌 330013
Application of the surface-to-borehole direct current method for subgrade investigations in karst terrain
YU Xiao-Qing1(), WEN Jin-Hao2()
1. Jiangxi Ganyue Expressway Co. Ltd., Nanchang 330006, China
2. School of Geophysics and Space Exploration, East China University of Technology, Nanchang 330013, China
全文: PDF(2898 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

在岩溶路基勘探工程中,地表高密度直流电阻率法的应用面临挑战:一方面,电极阵列长度的局限性限制了该方法的有效勘探深度;另一方面,随着勘探深度的递增,深部可获得的电流分布信息随之递减,导致该方法的分辨能力逐渐减弱,尤其难以精确预测深部的小规模岩溶发育区域。为解决这一问题,本文提出了一种解决方案,即在传统地表高密度直流电阻率法观测的基础上,引入井中电极,实现“地—井”直流电阻率数据采集。该策略旨在通过增设井中电极来增加并获取深部电流分布信息,从而达到增加局部有效勘探深度和提高反演结果分辨率的效果。为评估“地—井”直流电阻率观测方法在获取深部岩溶信息方面的效果,本文首先采用数值模拟方法进行深入分析,随后,通过岩溶路基的实测数据反演结果,进一步论证了该方法的实际应用价值与有效性。研究结果显示,引入井中电极的高密度直流电阻率测量技术能够显著提升对深部异常体的识别分辨率,为打破高密度电法在深部岩溶勘探中的局限性提供了有效路径。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
余小晴
温金豪
关键词 岩溶路基勘探地—井直流电法正则化反演    
Abstract

In karst subgrade exploration engineering, the application of the surface multi-electrode resistivity method faces challenges: on the one hand, the limitation of electrode array length constrains the effective exploration depth of this method; on the other hand, as the exploration depth increases, the available current distribution information from deeper layers decreases, resulting in a gradual weakening of the method's resolution capability, particularly in accurately predicting small-scale karst development areas at depth. To address this issue, the article proposes a solution: introducing wellbore electrodes on the basis of traditional surface multi-electrode resistivity observations to achieve “surface-to-wellbore” resistivity data acquisition. This strategy aims to increase and obtain deep current distribution information by adding wellbore electrodes, thereby enhancing the local effective exploration depth and improving the resolution of inversion results. To evaluate the effectiveness of the “surface-to-wellbore” resistivity observation method in obtaining deep karst information, the article first conducts an in-depth analysis using numerical simulation methods. Subsequently, the practical application value and effectiveness of this method are further demonstrated through inversion results based on measured data from karst subgrades. The research results show that the multi-electrode resistivity measurement technique with wellbore electrodes can significantly improve the resolution for identifying deep anomalies, providing an effective path to overcome the limitations of multi-electrode resistivity methods in deep karst exploration.

Key wordskarst    subgrade exploration    surface-borehole direct current method    regularization for inversion
收稿日期: 2024-10-10      修回日期: 2024-11-18      出版日期: 2025-12-20
ZTFLH:  P631  
基金资助:江西省交通运输厅项目“孔底岩溶探测装备与判读技术研究”(2022H0025);核资源与环境国家重点实验室联合创新基金项目(2022NRE-LH-08)
通讯作者: 温金豪
引用本文:   
余小晴, 温金豪. 地—井直流电法在路基岩溶勘探中的应用[J]. 物探与化探, 2025, 49(6): 1459-1466.
YU Xiao-Qing, WEN Jin-Hao. Application of the surface-to-borehole direct current method for subgrade investigations in karst terrain. Geophysical and Geochemical Exploration, 2025, 49(6): 1459-1466.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2025.1407      或      https://www.wutanyuhuatan.com/CN/Y2025/V49/I6/1459
Fig.1  地—井高密度电法勘探示意
Fig.2  简单理论模型
Fig.3  地表装置的视电阻率等值线
Fig.4  反演结果对比
Fig.5  复杂理论模型
Fig.6  反演结果对比
Fig.7  测线布置示意1
Fig.8  实测反演结果
Fig.9  测线布置示意2
Fig.10  实测反演结果
[1] 吴亚楠. 高密度电阻率法在莱芜市泉河地区岩溶地质勘查中的应用[J]. 中国岩溶, 2018, 37(4):617-623.
[1] Wu Y N. Application of the high-density electrical resistivity method to karst geological exploration in Quanhe,Laiwu City[J]. Carsologica Sinica, 2018, 37(4):617-623.
[2] 刘存林, 吴胜仓. 综合勘察方法在某公路工程岩溶勘察中的应用[J]. 公路, 2021, 66(5):76-79.
[2] Liu C L, Wu S C. Application of comprehensive survey method in karst survey of a highway project[J]. Highway, 2021, 66(5):76-79.
[3] 戴建玲, 雷明堂, 蒋小珍, 等. 长江经济带岩溶塌陷分布、成因及其对工程建设的影响[J]. 中国地质, 2024, 51(1):184-202.
[3] Dai J L, Lei M T, Jiang X Z, et al. Distribution and causes of Karst collapse in Yangtze River Economic Belt and its influence on engineering construction[J]. Geology in China, 2024, 51(1):184-202.
[4] 夏波, 周佩华, 李文滔, 等. 高密度电阻率法不同装置在岩溶勘探中的应用效果研究[J]. 四川地质学报, 2022, 42(3):514-519.
[4] Xia B, Zhou P H, Li W T, et al. Study on application effect of different devices of high density resistivity method in Karst exploration[J]. Acta Geologica Sichuan, 2022, 42(3):514-519.
[5] 夏时斌, 廖国忠, 邓国仕, 等. 高密度电法和音频大地电磁测深法在西南岩溶地区地下水勘探中的应用[J]. 物探与化探, 2024, 48(3):651-659.
[5] Xia S B, Liao G Z, Deng G S, et al. Application of high-density electrical resistivity tomography and audio magnetotellurics for groundwater exploration in the Karst area in southwestern China[J]. Geophysical and Geochemical Exploration, 2024, 48(3):651-659.
[6] 周建兵, 罗锐恒, 贺昌坤, 等. 文山小河尾水库岩溶含水渗漏通道的地球物理新证据[J]. 物探与化探, 2023, 47(3):707-717.
[6] Zhou J B, Luo R H, He C K, et al. New geophysical evidence for Karst water-bearing seepage pathways in the Xiaohewei reservoir,Wenshan City[J]. Geophysical and Geochemical Exploration, 2023, 47(3):707-717.
[7] 唐宇豪, 魏栋华, 索朗, 等. 地震映像法和地质雷达法在铁路隧底岩溶探测中的应用[J]. 工程地球物理学报, 2021, 18(5):665-670.
[7] Tang Y H, Wei D H, Suo L, et al. Application of seismic imaging method and ground penetrating radar method in Karst detection at the bottom of railroad tunnels[J]. Chinese Journal of Engineering Geophysics, 2021, 18(5):665-670.
[8] 刘东坤, 魏昶帆, 吴勇, 等. 地质雷达法在桩底岩溶探测中的频谱差异分析[J]. 地下空间与工程学报, 2020, 16(S2):971-975.
[8] Liu D K, Wei C F, Wu Y, et al. Analysis on the spectrum difference of electromagnetic method for the bottom of the pile in Karst detection project[J]. Chinese Journal of Underground Space and Engineering, 2020, 16(S2):971-975.
[9] 杨磊, 张志勇, 周峰, 等. 探地雷达在路基勘查中的应用[J]. 公路, 2015, 60(5):17-21.
[9] Yang L, Zhang Z Y, Zhou F, et al. Application of GPR in the exploration of road base[J]. Highway, 2015, 60(5):17-21.
[10] 王薇, 邓小虎, 金聪, 等. 电磁波CT 揭露重大工程岩溶发育特征——以某地铁岩溶勘察为例[J]. 科学技术与工程, 2020, 20(34):13977-13982.
[10] Wang W, Deng X H, Jin C, et al. The characteristics of Karst development in major projects revealed by electromagnetic wave computed tomography:A case for Karst investigation of a metro[J]. Science Technology and Engineering, 2020, 20(34):13977-13982.
[11] 高阳, 熊华山, 彭明涛, 等. 渝东南岩溶储水构造高密度电阻率法异常特征[J]. 物探与化探, 2016, 40(6):1108-1115.
[11] Gao Y, Xiong H S, Peng M T, et al. High density electrical prospecting anomaly analysis of water-bearing structure in Karst area of southeast Chongqing[J]. Geophysical and Geochemical Exploration, 2016, 40(6):1108-1115.
[12] 郑志龙, 陈洋, 王丽君, 等. 高密度电法在某高速公路岩溶隧道探测中的应用[J]. 地下空间与工程学报, 2021, 17(S2):912-917,924.
[12] Zheng Z L, Chen Y, Wang L J, et al. Application of high density electrical method in Karst tunnel detection of a highway[J]. Chinese Journal of Underground Space and Engineering, 2021, 17(S2):912-917,924.
[13] 孙忠辉. 高密度电法在复杂岩溶区公路勘察中的应用效果研究[D]. 成都: 西南交通大学, 2014.
[13] Sun Z H. Study on the application effect of high-density electrical method in highway survey in complex Karst area[D]. Chengdu: Southwest Jiaotong University, 2014.
[14] 肖宏跃, 雷行健, 雷宛. 环境物探技术在岩溶勘察中的应用及其效果[J]. 灾害学, 2007, 22(3):58-62.
[14] Xiao H Y, Lei X J, Lei W. The application of engineering exploring technology in lava exploration and its effects[J]. Journal of Catastrophology, 2007, 22(3):58-62.
[15] 高卫富, 贾李博, 胡安顺, 等. 直流电法多装置探测在岩溶探查中的研究及应用[J]. 地球物理学进展, 2021, 36(6):2687-2692.
[15] Gao W F, Jia L B, Hu A S, et al. Research and application of DC multi array detection in Karst exploration[J]. Progress in Geophysics, 2021, 36(6):2687-2692.
[16] 余鹏洲, 张志勇, 黄临平, 等. 带井观测高密度电阻率法2.5维非结构化网格反演[J]. 地球物理学进展, 2019, 34(4):1687-1693.
[16] Yu P Z, Zhang Z Y, Huang L P, et al. 2.5D inversion of borehole and surface multi-electrode DC data using unstructured mesh[J]. Progress in Geophysics, 2019, 34(4):1687-1693.
[17] 张志勇, 周峰, 李泽林. 基于最小梯度支撑的2.5D 井地电位法正则化聚焦反演[J]. 中国有色金属学报, 2015, 25(11):3182-3189.
[17] Zhang Z Y, Zhou F, Li Z L. 2.5D focusing inversion for boreholesurface electrical data based on minimum gradient support function[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(11):3182-3189.
[18] 徐世浙. 地球物理中的有限单元法[M]. 北京: 科学出版社, 1994.
[18] Xu S Z. The finite element method in geophysics[M]. Beijing: Science Press, 1994.
[19] Zhdanov M S. Geophysical inverse theory and regularization problems[M]. Amsterdam: Elsevier Science, 2002.
[20] Lelièvre P G, Farquharson C G. Gradient and smoothness regularization operators for geophysical inversion on unstructured meshes[J]. Geophysical Journal International, 2013, 195(1):330-341.
[21] 杨磊, 张志勇, 李曼, 等. 直流电阻率法与大地电磁法的二维联合反演[J]. 地球物理学进展, 2016, 31(2):851-855.
[21] Yang L, Zhang Z Y, Li M, et al. 2D joint inversion of direct current resistivity and magnetotelluric sounding data[J]. Progress in Geophysics, 2016, 31(2):851-855.
[1] 张中, 冯文成, 林杨. 微动探测技术在盾构隧道穿越城区岩溶地层中的应用[J]. 物探与化探, 2025, 49(2): 520-528.
[2] 牟晓东. 基于颜色融合技术的综合跨孔层析岩溶探测方法[J]. 物探与化探, 2024, 48(6): 1730-1740.
[3] 夏时斌, 廖国忠, 邓国仕, 杨剑, 李富. 高密度电法和音频大地电磁测深法在西南岩溶地区地下水勘探中的应用[J]. 物探与化探, 2024, 48(3): 651-659.
[4] 黄瑶. 基于三维电阻率法的水电工程隧道地质条件探查[J]. 物探与化探, 2024, 48(1): 281-286.
[5] 周建兵, 罗锐恒, 贺昌坤, 潘晓东, 张绍敏, 彭聪. 文山小河尾水库岩溶含水渗漏通道的地球物理新证据[J]. 物探与化探, 2023, 47(3): 707-717.
[6] 覃剑文, 姜晓腾, 谢贵城, 孙汉武, 何流, 孙怀凤. 基于高密度电法的城市复杂环境岩溶探查研究——以贵港市北环新村为例[J]. 物探与化探, 2023, 47(2): 530-539.
[7] 余长恒, 郑健, 张旭林, 周昊, 王安平, 刘磊, 李易. 川南地区页岩气井平台钻前工程物探集成技术[J]. 物探与化探, 2023, 47(1): 99-109.
[8] 张健, 冯旭亮, 岳想平. 综合物探方法在隐伏岩溶探测中的应用[J]. 物探与化探, 2022, 46(6): 1403-1410.
[9] 罗卫锋, 胡志方, 甘伏平, 张庆玉, 康海霞, 张云枭. 南方碳酸盐岩地区页岩气钻探井位选址中的综合物探方法应用[J]. 物探与化探, 2022, 46(4): 824-829.
[10] 张春来, 杨慧, 黄芬, 曹建华. 广西马山县岩溶区土壤硒含量分布及影响因素研究[J]. 物探与化探, 2021, 45(6): 1497-1503.
[11] 蔡盛. 张吉怀铁路隧道超前预报技术应用研究[J]. 物探与化探, 2021, 45(5): 1275-1280.
[12] 何可, 郭明, 胡章荣, 易国财, 王仕兴. 半航空瞬变电磁L1范数自适应正则化反演[J]. 物探与化探, 2021, 45(5): 1338-1346.
[13] 李谭伟, 李振兴, 葛延明, 邬远明. 综合物探方法在株洲湘江大桥勘察中的应用[J]. 物探与化探, 2021, 45(3): 785-792.
[14] 陆泽峰. 高山峡谷地区桥址区岩溶发育特征地球物理勘察[J]. 物探与化探, 2021, 45(1): 252-256.
[15] 孟庆旺. 综合物探方法在嘉祥县青山省级地质公园溶洞勘察中的应用效果[J]. 物探与化探, 2020, 44(6): 1464-1469.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com