Please wait a minute...
E-mail Alert Rss
 
物探与化探  2025, Vol. 49 Issue (5): 1008-1017    DOI: 10.11720/wtyht.2025.1257
  地质调查资源勘查 本期目录 | 过刊浏览 | 高级检索 |
中国陆域出露地壳76种元素岩石地球化学图的构建——方法、问题与展望
刘东盛1,2(), 陈圆圆3, 迟清华1,2
1.中国地质科学院地球物理地球化学勘查研究所 自然资源部地球化学探测重点实验室, 河北 廊坊 065000
2.联合国教科文组织全球尺度地球化学国际研究中心, 河北 廊坊 065000
3.河北省区域地质调查院,河北 廊坊 065000
Construction of the petrogeochemical map of 76 elements in the exposed crust across the Chinese continent: Methods, challenges, and prospects
LIU Dong-Sheng1,2(), CHEN Yuan-Yuan3, CHI Qing-Hua1,2
1. Key Laboratory of Geochemical Exploration, Ministry of Natural Resources, Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China
2. UNESCO International Centre on Global-Scale Geochemistry, United Nations Educational Scientific and Cultural Organization, Langfang 065000, China
3. Hebei Regional Geological Survey Institute, Langfang 065000, China
全文: PDF(4556 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

出露地壳是岩石圈与土壤圈、水圈、大气圈接触的关键界面,出露地壳岩石地球化学图可为不同圈层间元素分布与循环研究提供关键的基础地球化学数据。由于大尺度出露地壳元素地球化学图绘制受到数据量和制图技术的制约,目前尚无一张覆盖中国陆域的出露地壳地球化学图。本文结合已掌握的16 000余条岩石地球化学数据和基础地质资料,创新性地提出制图技术路线:构建岩石地球化学库、地层结构信息库和地质单元空间信息库;从基础数据库提取地层和岩体的地理空间信息;将岩石地球化学信息赋予地层和岩体,获得地层和岩体的空间分布及其元素含量;通过GIS技术实现对出露地壳76种元素含量空间分布模式的可视化表达。此外,本文对制图流程存在的地质信息精确度、特殊岩性岩石样品缺乏、可靠性评价与适用范围等问题进行剖析,并提出解决方案。出露地壳元素地球化学图具有重要的应用价值,可为地球化学背景调查和岩石—沉积物元素循环等研究提供基础数据支撑。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘东盛
陈圆圆
迟清华
关键词 出露地壳岩石地球化学图中国陆域构建方法76种元素    
Abstract

The exposed crust is the critical interface where the lithosphere interacts with the pedosphere, hydrosphere, and atmosphere. The petrogeochemical map of the exposed crust can provide essential fundamental geochemical data for investigating the distributions and cycles of elements among different spheres. However, the plotting of the large-scale petrogeochemical map of the exposed crust has been constrained by the limited data volume and mapping technology. Consequently, no such a map covering the Chinese continent is available. This study proposed an innovative mapping technology roadmap based on over 16,000 petrogeochemical data and fundamental geological information. First, the databases for petrogeochemical information, stratigraphic structure information, and spatial information of geological units were constructed. Second, the geospatial information of strata and rock masses was extracted from the basic databases. Third, the petrogeochemical information was assigned to strata and rock masses to obtain their spatial distributions and element contents. Fourth, the spatial distribution patterns of 76 elements in the exposed crust were visualized using geographical information system (GIS) technology. Additionally, this study analyzed the challenges in the mapping process, including geological information accuracy, the lack of samples for special lithologies, reliability assessment, and scope of application, finally proposing corresponding solutions. The petrogeochemical map of the exposed crust demonstrates significant application potential, providing foundational data for investigating geochemical background and rock-sediment element cycling.

Key wordspetrogeochemical map of the exposed crust    Chinese continent    construction method    76 elements
收稿日期: 2024-06-08      修回日期: 2024-12-30      出版日期: 2025-10-20
ZTFLH:  P632  
基金资助:中国地质调查局地质调查项目(DD20230623);中国地质调查局地质调查项目(DDZ0242671);中国地质科学院青年英才项目(JKYQN202352)
作者简介: 刘东盛(1985-),男,高级工程师,从事岩石和沉积物地球化学填图研究工作。Email:dopsonliu@sina.com
引用本文:   
刘东盛, 陈圆圆, 迟清华. 中国陆域出露地壳76种元素岩石地球化学图的构建——方法、问题与展望[J]. 物探与化探, 2025, 49(5): 1008-1017.
LIU Dong-Sheng, CHEN Yuan-Yuan, CHI Qing-Hua. Construction of the petrogeochemical map of 76 elements in the exposed crust across the Chinese continent: Methods, challenges, and prospects. Geophysical and Geochemical Exploration, 2025, 49(5): 1008-1017.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2025.1257      或      https://www.wutanyuhuatan.com/CN/Y2025/V49/I5/1008
Fig.1  技术路线
Fig.2  地质单元空间信息库结构示意
Fig.3  地层结构信息库
时代 代号 时代 代号 时代 代号
第四纪 Q 石炭纪 C 新元古代 Pt3
第三纪 R 泥盆纪 D 中元古代 Pt2
白垩纪 K 志留纪 S 古元古代 Pt1
侏罗纪 J 奥陶纪 O 新太古代 Ar3
三叠纪 T 寒武纪 中太古代 Ar2
二叠纪 P 震旦纪 Z 古太古代 Ar1
Table 1  地层时代划分方案
Fig.4  中国二级构造单元区划及岩石样品分布(审图号:GS(2016)1584号)
一级构造单元 二级构造单元 一级构造单元 二级构造单元
序号 名称 序号 名称 序号 名称 序号 名称
A 天山—兴蒙造山带 A1 额尔古纳造山带 C 秦—祁—昆造山带 C1 苏鲁造山带
A2 兴蒙造山带 C2 大别造山带
A3 松辽盆地 C3 东秦岭造山带
A4 吉黑造山带 C4 西秦岭造山带
A5 阿尔泰造山带 C5 祁连造山带
A6 准噶尔造山带 C6 昆仑造山带
A7 天山造山带 D 扬子克拉通 D1 下扬子台褶带
A8 北山造山带 D2 江南造山带
B 华北克拉通 B1 内蒙地轴 D3 上扬子台坳
B2 华北北缘造山带 D4 康滇地轴
B3 燕山造山带 E 华南造山带 E1 湘赣粤造山带
B4 辽东台隆 E2 东南沿海火山带
B5 胶东台隆 E3 右江造山带
B6 鲁西台隆 F 塔里木克拉通 F 塔里木克拉通
B7 华北盆地 G 松潘—甘孜造山带 G 松潘甘孜造山带
B8 豫西台隆 H
西藏—三江造山带
H1 羌塘—昌都地块
B9 山西台隆 H2 改则那曲造山带
B10 鄂尔多斯盆地 H3 喜马拉雅造山带
B11 阿拉善台隆
Table 2  构造区划方案
一级 二级 名称 一级 二级 名称 一级 二级 名称 一级 二级 名称 一级 二级 名称
G 酸性岩 K16 白榴岩 V30 安山质火山碎屑岩 le10 钾长变(浅)粒岩 D20 灰质白云岩
G01 低钙花岗岩 K17 霞石岩 V40 玄武安山质火山
碎屑岩
le20 二长变粒岩 D30 泥质白云岩
G02 高钙花岗岩 B 基性岩 V50 粗面质火山碎屑岩 le30 斜长变粒岩 D40 砂质白云岩
G11 流纹岩 B01 辉长岩 V60 粗面安山质火山
碎屑岩
le40 矽线石榴变粒岩 D50 硅质白云岩
G12 碱性流纹岩 B02 二长辉长岩 sl 板岩 le50 石墨变粒岩 M 泥岩
G13 英安岩 B03 苏长岩 sl10 绢云板岩 am 斜长角闪岩 M10 粉砂质泥岩
G14 石英角斑岩 B04 辉绿岩 sl20 钙质板岩 am00 玄武质斜长角闪岩 M20 砂质泥岩
G15 粗面英安岩 B05 斜长岩 sl30 硅质板岩 am10 紫苏斜长角闪岩 M30 钙质泥岩
I 中性岩 B06 变辉长岩 sl40 炭质板岩 am20 二辉斜长角闪岩 M40 铝土质页岩
I01 闪长岩 B11 钙碱性玄武岩 sl50 砂质板岩 am30 VF透辉斜长角
闪岩
M50 硅质页岩
I02 二长闪长岩 B12 拉斑玄武岩 sl60 泥质板岩 gr 麻粒岩 M60 炭质页岩
I03 二长岩 B13 碱性玄武岩 sl70 凝灰质板岩 gr10 花岗—花岗闪
长质麻粒岩
M70 铁铝质泥岩
I04 正长岩 B14 橄榄玄武岩 ph 千枚岩 gr20 斜长麻粒岩 M80 灰泥岩
I05 碱长正长岩 B15 高铝玄武岩 ph10 绢云千枚岩 gr30 基性麻粒岩 M90 凝灰质页岩
I10 安山岩 B16 变玄武岩 ph20 绿泥千枚岩 gr40 超铁镁质麻粒岩 S 砂岩
I12 玄武安山岩 B17 细碧岩 ph30 阳起千枚岩 qu 石英岩类 S11 石英砂岩
I13 高镁(玻古)
安山岩
B18 粗面玄武岩 ph40 石英千枚岩 qu10 石英岩 S12 长石石英砂岩
I14 变安山岩 B19 碱玄岩 ph50 方解千枚岩 qu20 长石石英岩 S13 长石砂岩
I20 粗面岩 U 超基性岩 ms 片岩 qu30 磁铁石英岩 S14 粉(细)砂岩
K 碱性岩 U01 橄榄岩 ms10 云母片岩 ma 大理岩 S15 杂砂岩
K01 副长石正长岩 U04 辉石岩 ms20 石英片岩 ma10 方解石大理岩 S16 砂岩
K02 副长石二长岩 U06 角闪石岩 ms30 绿片岩 ma20 白云石大理岩 S17 泥质砂岩
K03 副长石闪长岩 U07 榴辉岩 gn 片麻岩 ma30 富硅铝大理岩 S18 钙质砂岩
K04 副长石辉长岩 U11 麦美奇岩 gn10 花岗质—花岗闪
长质片麻岩
L 灰岩 S19 灰砂岩
K05 霓霞岩 U12 科马提岩 gn20 贫碱长英质片麻岩 L10 石灰岩 S20 变余砂岩
K06 碳酸岩 U13 苦橄岩 gn30 斜长片麻岩类 L20 白云质灰岩 S30 凝灰质砂岩
K11 响岩 U14 玻基橄辉岩 gn40 富铝贫碱斜长
片麻岩
L30 泥质灰岩 S40 冰碛岩
K12 碱玄质响岩 U15 钾镁煌斑岩 gn50 黑云斜长片麻岩 L40 砂质灰岩 S50 含铜砂岩
K13 响岩质碱玄岩 V 火山碎屑岩 gn60 角闪斜长片麻岩 L50 硅质灰岩 Si 硅质岩
K14 碱玄岩 V10 流纹质火山
碎屑岩
gn70 辉石斜长片麻岩 D 白云岩 Si10 炭质硅质岩
K15 碧玄岩 V20 英安质火山
碎屑岩
le 变(浅)粒岩 D10 白云岩 Si20 燧石岩
Table 3  岩石分类命名方案
Fig.5  地层化学成分赋值流程示意
Fig.6  出露岩体化学成分赋值流程示意
Fig.7  地质单元的空间分布和化学成分的GIS表达
[1] National Academies of Sciences,Engineering,and Medicine. A vision for NSF earth sciences 2020—2030:Earth in time[M]. Washington,D. C.:The National Academies Press, 2020.
[2] Gray J M, Bishop T F A, Wilford J R. Lithology and soil relationships for soil modelling and mapping[J]. Catena, 2016,147:429-440.
[3] Dinelli E, Lima A, De Vivo B, et al. Hydrogeochemical analysis on Italian bottled mineral waters:Effects of geology[J]. Journal of Geochemical Exploration, 2010, 107(3):317-335.
[4] Snæbjörnsdóttir S Ó, Sigfússon B, Marieni C, et al. Carbon dioxide storage through mineral carbonation[J]. Nature Reviews Earth & Environment, 2020, 1(2):90-102.
[5] Deng K, Yang S Y, Guo Y L. A global temperature control of silicate weathering intensity[J]. Nature Communications, 2022,13:1781.
[6] Fang Q, Lu A H, Hong H L, et al. Mineral weathering is linked to microbial priming in the critical zone[J]. Nature Communications, 2023,14:345.
[7] Wei X, Bai X Y, Wen X F, et al. A large and overlooked Cd source in karst areas:The migration and origin of Cd during soil formation and erosion[J]. Science of The Total Environment, 2023,895:165126.
[8] Huang J H, Huang F, Evans L, et al. Vanadium:Global (bio)geochemistry[J]. Chemical Geology, 2015,417:68-89.
[9] Wang X, Liu X, Wang W. National-scale distribution and its influence factors of calcium concentrations in Chinese soils from the China Global Baselines Project[J]. Journal of Geochemical Exploration, 2022,233:106907.
[10] Wang W, Wang X, Zhang B, et al. Concentrations and spatial distribution of chlorine in the pedosphere in China:Based on the China Geochemical Baselines Project[J]. Journal of Geochemical Exploration, 2022,242:107089.
[11] Wen Y, Li W, Yang Z, et al. Enrichment and source identification of Cd and other heavy metals in soils with high geochemical background in the karst region,Southwestern China[J]. Chemosphere, 2020,245:125620.
[12] Miller H J. Tobler's first law and spatial analysis[J]. Annals of the Association of American Geographers, 2004, 94(2):284-289.
[13] 迟清华, 鄢明才. 中国东部岩石地球化学图[J]. 地球化学, 2005, 34(2):97-108.
[13] Chi Q H, Yan M C. Lithogeochemical map in the eastern part of China[J]. Geochimica, 2005, 34(2):97-108.
[14] Liu D S, Chi Q H, Wang X Q, et al. National-scale cobalt geochemical mapping of exposed crust in China[J]. Minerals, 2022, 12(10):1220.
[15] 鄢明才, 迟清华. 中国东部地壳与岩石的化学组成[M]. 北京: 科学出版社,1997.
[15] Yan M C, Chi Q H. The chemical compositions of crust and rocks in the eastern part of China[M]. Beijing: Science Press,1997.
[16] Wang X Q. Reprint of “China geochemical baselines:Sampling methodology”[J]. Journal of Geochemical Exploration, 2015,154:17-31.
[17] 刘东盛, 迟清华, 王学求, 等. 华南—西秦岭地球化学走廊带水系沉积物钴含量影响因素评价[J]. 地质学报, 2023, 97(5):1-15.
[17] Liu D S, Chi Q H, Wang X Q, et al. Evaluation of factors influencing cobalt content in sediments of the hydrological system in the South China-West Qinling geological corridor[J]. Acta Geologica Sinica, 2023, 97(5):1-15.
[18] Ye Z Q, Huang T Z, Deng C K. Spatial database of 1∶2,500,000 digital geologic map of people's republic of China[J]. Acta of Geoscientific Data & Discovery, 2017, 44(S1):24-31.
[19] 庞健峰, 丁孝忠, 韩坤英, 等. 1∶100 万中华人民共和国数字地质图空间数据库[J]. 中国地质, 2017, 44(S1):8-18.
[19] Pang J F, Ding X Z, Han K Y, et al. 1∶100 million digital geological map spatial database of the People's Republic of China[J]. Geological China, 2017, 44(S1):8-18.
[20] 潘桂棠, 肖庆辉, 陆松年, 等. 中国大地构造单元划分[J]. 中国地质, 2009, 36(1):1-16,255,17-28.
[20] Pan G T, Xiao Q H, Lu S N, et al. Subdivision of tectonic units in China[J]. Geology in China, 2009, 36(1):1-16,255,17-28.
[21] 任纪舜. 新一代中国大地构造图——中国及邻区大地构造图 (1∶5 000 000) 附简要说明:从全球看中国大地构造[J]. 地球学报, 2003, 24(1):1-2.
[21] Ren J S. A new generation of geological map of China—Geological map of China and adjacent areas (1∶5,000,000) with brief explanation:China's tectonics in a global perspective[J]. Acta Geologica Sinica, 2003, 24(1):1-2.
[22] 袁启玉, 李仰春, 吴亮, 等. 中华人民共和国地质图(1∶150万)空间数据库建设方法[J]. 地质学刊, 2024, 48(1):68-75.
[22] Yuan Q Y, Li Y C, Wu L, et al. Construction method of geological map spatial database of People's Republic of China (1∶1.5 million)[J]. Geological Journal, 2024, 48(1):68-75.
[23] Zheng X, Liu Y. Mechanisms of element precipitation in carbonatite-related rare-earth element deposits:Evidence from fluid inclusions in the Maoniuping deposit,Sichuan Province,southwestern China[J]. Ore Geology Reviews, 2019,107:218-238.
[24] Aranha M, Porwal A, Sundaralingam M, et al. Rare earth elements associated with carbonatite-alkaline complexes in western Rajasthan,India:Exploration targeting at regional scale[J]. Solid Earth, 2022, 13(3):497-518.
[25] Orberger B, van der Ent A. Nickel laterites as sources of nickel,cobalt and scandium:Increasing resource efficiency through new geochemical and biological insights[J]. Journal of Geochemical Exploration, 2019,204:297-299.
[26] 谢学锦, 任天祥, 奚小环, 等. 中国区域化探全国扫面计划卅年[J]. 地球学报, 2009, 30(6):700-716.
[26] Xie X J, Ren T X, Xi X H, et al. The implementation of the regional geochemistry-national reconnaissance program(RGNR) in China in the past thirty years[J]. Acta Geoscientica Sinica, 2009, 30(6):700-716.
[27] de Caritat P, Cooper M. A continental-scale geochemical atlas for resource exploration and environmental management:The national geochemical survey of Australia[J]. Geochemistry:Exploration, Environment,Analysis, 2016, 16(1):3-13.
[28] Ottesen R T, Bogen J, Bølviken B, et al. Overbank sediment:A representative sample medium for regional geochemical mapping[J]. Journal of Geochemical Exploration, 1989, 32(1-3):257-277.
[29] 成杭新, 谢学锦. 泛滥平原沉积物的超低密度采样代表性研究 (一)[J]. 长春地质学院学报, 1997, 27(3):289-95.
[29] Cheng H X, Xie X J. Research on the representativeness of ultra-low-density sampling of floodplain sediments (1)[J]. Journal of Changchun Institute of Geology, 1997, 27(3):289-95.
[30] Bølviken B, Bogen J, Jartun M, et al. Overbank sediments:A natural bed blending sampling medium for large-scale geochemical mapping[J]. Chemometrics and Intelligent Laboratory Systems, 2004, 74(1):183-199.
[31] Gong Q J, Deng J, Jia Y J, et al. Empirical equations to describe trace element behaviors due to rock weathering in China[J]. Journal of Geochemical Exploration, 2015,152:110-117.
[32] Stolar D, Roe G, Willett S. Controls on the patterns of topography and erosion rate in a critical orogen[J]. Journal of Geophysical Research:Earth Surface, 2007, 112(F4):2006JF000713.
[33] Lipp A G, Roberts G G, Whittaker A C, et al. River sediment geochemistry as a conservative mixture of source regions:Observations and predictions from the cairngorms,UK[J]. Journal of Geophysical Research:Earth Surface, 2020, 125(12):e2020JF005700.
[34] 李仰春, 王永志, 陈圆圆, 等. 智绘地质——新一代智能化地质编图模式及应用[J]. 地质通报, 2020, 39(6):861-870.
[34] Li Y C, Wang Y Z, Chen Y Y, et al. Intelligent geological mapping:A novel pattern for smart geological compilation[J]. Geological Bulletin of China, 2020, 39(6):861-870.
[35] 王涛, 童英, 丁毅, 等. DDE-岩浆岩数据库初步构建与应用[J]. 岩石学报, 2024, 40(3):873-888.
[35] Wang T, Tong Y, Ding Y, et al. Preliminary construction and application of DDE-database of igneous rocks[J]. Acta Petrologica Sinica, 2024, 40(3):873-888.
[36] Reimann C, Garrett R G. Geochemical background—Concept and reality[J]. Science of The Total Environment, 2005, 350(1-3):12-27.
[37] Gong Q J, Zhang G X, Zhang J, et al. Behavior of REE fractionation during weathering of dolomite regolith profile in southwest China[J]. Acta Geologica Sinica-English Edition, 2010, 84(6):1439-1447.
[38] Garzanti E, Resentini A. Provenance control on chemical indices of weathering[J]. Sedimentary Geology, 2016,336:81-95.
[39] Guo Y L, Yang S Y, Deng K. Disentangle the hydrodynamic sorting and lithology effects on sediment weathering signals[J]. Chemical Geology, 2021,586:120607.
[40] Carranza E J M. Analysis and mapping of geochemical anomalies using logratio-transformed stream sediment data with censored values[J]. Journal of Geochemical Exploration, 2011, 110(2):167-185.
[41] Collins A L, Blackwell M, Boeckx P, et al. Sediment source fingerprinting:Benchmarking recent outputs,remaining challenges and emerging themes[J]. Journal of Soils and Sediments, 2020, 20(12):4160-4193.
doi: 10.1007/s11368-020-02755-4 pmid: 33239964
[42] Harris J R, Grunsky E C. Predictive lithological mapping of Canada's North using Random Forest classification applied to geophysical and geochemical data[J]. Computers & Geosciences, 2015,80:9-25.
[43] 郭志娟, 孔牧, 张华, 等. 适合地球化学勘查的景观划分研究[J]. 物探与化探, 2015, 39(1):12-15.
[43] Guo Z J, Kong M, Zhang H, et al. Landscape division suitable for geochemical exploration[J]. Geophysical and Geochemical Exploration, 2015, 39(1):12-15.
[44] Hilton R G, West A J. Mountains, erosion and the carbon cycle[J]. Nature Reviews Earth & Environment, 2020, 1(6):284-299.
[45] 王学求. 透视全球资源与环境,实施“化学地球” 国际大科学计划[J]. 中国地质, 2017, 44(1):201-202.
[45] Wang X Q. The initiative for international cooperation project of "Mapping Chemical Earth" for sustaining global resources and environments[J]. Geology in China, 2017, 44(1):201-202.
[1] 张宏燕, 赵焕, 郭鹏. 河南省桐柏县老湾金矿地球化学特征及深部成矿预测[J]. 物探与化探, 2025, 49(5): 1039-1052.
[2] 朵德英, 刘秀峰, 李波. 基于构造地球化学弱信息提取技术的金属矿产探测研究[J]. 物探与化探, 2025, 49(5): 1053-1060.
[3] 唐伟, 汤正江, 张应娥, 王秋璇. 空心微子区法在大兴安岭森林沼泽景观区区域化探异常圈定中的应用[J]. 物探与化探, 2025, 49(5): 1070-1079.
[4] 熊攀, 王伟, 秦彦伟, 李鹏, 陈鸣新, 田浩宇, 刘波. 二连盆地芒来铀矿床铀镭平衡系数特征研究[J]. 物探与化探, 2025, 49(5): 1080-1089.
[5] 奚小环, 戴意蕴, 王永华, 苗国文, 庄道泽, 陈惠强, 杜海燕, 唐文春, 吴天生, 鄢新华, 李绪善, 李丽辉, 孔凡吉, 曾明中, 李明辉, 杨奕, 陈行时, 付海涛, 白荣杰, 姚岚. 中国区域化探:历史、成就与未来[J]. 物探与化探, 2025, 49(5): 989-1007.
[6] 田辽东, 龙登红, 杨涛, 刘海, 马敏雄, 姜洪颖. 区域化探数据地质矿产信息提取研究——以甘肃省徽县高桥地区为例[J]. 物探与化探, 2025, 49(4): 768-777.
[7] 柴晨晖, 秦越强, 李朋元, 辛凯, 王建民, 殷嘉乐, 李超群, 原宁波, 郭栋, 孙宇飞. 内蒙古镶黄旗毕山地区土壤地球化学特征及找矿方向[J]. 物探与化探, 2025, 49(4): 778-789.
[8] 李浩涵, 张聪, 李文正, 张春贺, 张远, 王梓, 陈维堃, 方镕慧. 鄂西黄陵背斜周缘震旦系灯影组白云岩成因分析[J]. 物探与化探, 2025, 49(4): 790-801.
[9] 张明军, 鄢新华, 熊光强, 罗先明, 朱文晖, 叶岳琛. 化探方法发现江西白果含锂瓷石矿[J]. 物探与化探, 2025, 49(4): 802-809.
[10] 程俊义, 彭松, 范云飞, 卢平, 陈秀旺. 兴义某铀矿土壤氡气特征及其找矿应用[J]. 物探与化探, 2025, 49(4): 810-817.
[11] 王志强, 倪萍, 张宏绪, 石天池, 杨建锋, 张惠玲. 土壤—农作物系统中重金属元素地球化学特征及健康风险评价[J]. 物探与化探, 2025, 49(4): 943-953.
[12] 马强, 苗国文, 朱明霞, 王帅, 贺连珍, 马楠. 干旱咸水湖沉积型富硒土地的划定及开发利用探讨——以青海省洪水泉为例[J]. 物探与化探, 2025, 49(4): 973-979.
[13] 周四春, 刘晓辉, 秦明宽, 刘国安, 郭强, 许强, 胡波, 王广西. 适合于沙漠覆盖区隐伏砂岩铀矿勘查的地气探测技术研究[J]. 物探与化探, 2025, 49(3): 529-537.
[14] 刘国安, 周四春, 刘晓辉, 李盛富, 张明正, 秦明宽, 许强, 王广西, 胡波. 戈壁区效率可调动态地气法探测隐伏砂岩铀矿的试验及效果[J]. 物探与化探, 2025, 49(3): 538-547.
[15] 施玉娇, 张江波, 种松树, 田柯南, 席国庆, 周奇明, 赵立克, 王建超, 杨芳芳. 内蒙古喀喇沁旗金蟾山金矿构造叠加晕异常特征及找矿预测[J]. 物探与化探, 2025, 49(3): 569-577.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com