Please wait a minute...
E-mail Alert Rss
 
物探与化探  2025, Vol. 49 Issue (5): 1053-1060    DOI: 10.11720/wtyht.2025.1291
  地质调查资源勘查 本期目录 | 过刊浏览 | 高级检索 |
基于构造地球化学弱信息提取技术的金属矿产探测研究
朵德英, 刘秀峰, 李波
青海省第一地质勘查院,青海 海东 810600
Metal mineral exploration based on tectono-geochemistry weak information extraction
DUO De-Ying, LIU Xiu-Feng, LI Bo
The First Geological Exploration Institute of Qinghai Province, Haidong 810600, China
全文: PDF(3744 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

为发现和识别可能富含金属矿产的区域,提出基于构造地球化学弱信息提取的金属矿产找矿方法。在确定勘查范围后,采用方格网布置采样点,对采集到的样品进行化学测试,通过静态提取、离心、动态提取的过程,提取出样品中的构造地球化学弱信息。根据提取结果分析区域内金属矿产在断裂带中的分布结果,完成金属矿产找矿。在青海省都兰县五龙沟地区无名沟—百吨沟区域开展地质勘查,利用构造地球化学弱信息提取结果,对勘查区内的地质结构进行分析,共发现17条断裂带,其中Ⅳ号断裂带可圈定一条长约为500 m的金属矿体,Ⅵ号断裂带可圈定6条180~400 m的金属矿体,Ⅺ号断裂带可圈定2条550~800 m的金属矿体,其余矿体均为盲矿体。本次构造地球化学弱信息提取在金属矿产找矿方法中的应用取得了显著的效果,满足了金属矿产找矿工作的现实需要,可在该类型地质环境的金属矿产找矿工作中进行推广应用。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朵德英
刘秀峰
李波
关键词 金属矿产找矿金属矿产构造地球化学弱信息找矿方法构造地球化学    
Abstract

To identify areas potentially rich in metal minerals, this study proposed a prospecting method based on tectono-geochemistry weak information extraction. After the exploration scope was determined, sampling points were arranged using a grid pattern, followed by chemical tests on the collected samples. Through static extraction, centrifugation, and dynamic extraction, weak tectono-geochemical information in the samples was extracted. Then, the distribution of metal minerals within fault zones was analyzed based on the extraction results, and thus metal mineral prospecting was completed. During the geological exploration in the Wuminggou-Baidungou area in the Wulonggou, Dulan County, Qinghai Province, the mineral structures within the exploration area were analyzed using extracted weak tectono-geochemical information. As a result, among the 17 fault zones identified, a 500 m long metal ore body was delineated in fault zone Ⅳ, six ore bodies with lengths ranging from 180 to 400 m were determined in fault zone Ⅵ, and two ore bodies with lengths ranging from 550 to 800 m were delineated in fault zone Ⅺ. The remaining ore bodies were identified as blind ore bodies. The application of tectono-geochemistry weak information extraction for metal mineral prospecting yielded significant achievements, meeting the practical needs of metal mineral exploration. This method can be widely applied to metal mineral prospecting in similar geological settings.

Key wordsmetal mineral exploration    metal mineral    weak tectono-geochemical information    prospecting method    tectono-geochemistry
收稿日期: 2024-07-03      修回日期: 2024-09-04      出版日期: 2025-10-20
ZTFLH:  P632  
基金资助:青海省自然资源厅地质勘查基金项目(2017042039jc020);青海省自然资源厅地质勘查基金项目(2018137023jc006)
作者简介: 朵德英(1990-),男,地质矿产工程师,现从事矿产勘查找矿及科研工作。
引用本文:   
朵德英, 刘秀峰, 李波. 基于构造地球化学弱信息提取技术的金属矿产探测研究[J]. 物探与化探, 2025, 49(5): 1053-1060.
DUO De-Ying, LIU Xiu-Feng, LI Bo. Metal mineral exploration based on tectono-geochemistry weak information extraction. Geophysical and Geochemical Exploration, 2025, 49(5): 1053-1060.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2025.1291      或      https://www.wutanyuhuatan.com/CN/Y2025/V49/I5/1053
Fig.1  采样点布置
参数项 参数范围
采样深度 -3~0 mm
采样锥直径 1.1 mm
气流量 14 L/min
蠕动泵速 25 r/min
截取锥直径 0.8 mm
炬管水平位置 4.0~4.3 mm
炬管垂直位置 2.6~3.0 mm
Table 1  采样参数设置
元素 检出限/10-6 相对误差范围/% 合格率/%
Cd 0.05 ±5 98
Pb 0.1 ±4 97.5
Sn 0.2 ±6 96.5
Au 0.001 ±3 99
As 0.01 ±7 95
Sb 0.005 ±6 96
U 0.02 ±8 94.5
Rb 1 ±9 94
Table 2  各元素检出限、相对误差范围以合格率统计
Fig.2  动态提取过程
Fig.3  研究区的交通位置
Fig.4  研究区断裂带部分展示
Fig.5  静态提取测试结果
元素 样品数 含量/(ng·mL-1)
Cd 26 0.56
Pb 496 0.14
Sn 62 1.34
Au 56 0.53
As 565 0.66
Sb 79 0.05
U 99 0.03
Rb 133 0.14
Table 3  样本构造地球化学弱信息提取结果
元素 背景值/
(ng·mL-1)
异常下限/
(ng·mL-1)
弱异常分带界限/
(ng·mL-1)
Cd 0.2 0.4 0.4~0.8
Pb 0.1 0.25 0.25~0.5
Sn 1.0 2.2 2.2~4.4
Au 0.3 0.7 0.7~1.4
As 0.5 1.2 1.2~2.4
Sb 0.03 0.07 0.07~0.14
U 0.02 0.05 0.05~0.1
Rb 0.12 0.26 0.26~0.52
Table 4  样本中各元素背景值、异常下限及弱异常分带界限
Fig.6  勘查区结构
1—第四系冲洪积物;2—晚三叠世蚀变余长花岗岩;3—晚三叠世黑云母二长花岗岩;4—中三叠世黑云母花岗闪长岩;5—中三叠世石英闪长岩;6—中三叠世闪长斑岩;7—中三叠世花岗闪长岩;8—中三叠世含暗色角闪包体花岗岩;9—晚二叠世二长花岗岩;10—早泥盆世角闪辉长岩;11—奥陶系祁漫塔格群火山岩组灰岩、硅质板岩、火山角砾岩等;12—青白口系丘吉东沟组千枚岩及结晶灰岩;13—长城系小庙组;14—古元古界金水口岩群黑云片麻岩;15—古元古界金水口岩群角闪片麻岩;16—黑云母花岗岩脉;17—地质界线;18—实测逆断层;19—性质不明断层;20—韧性剪切带;21—含金蚀变带及编号;22—勘查区;23—断裂带位置
Fig.7  金属矿产探测准确率结果
[1] 施玉北, 曾妍, 李蓉, 等. 滇西地区稀有金属宝石矿床成矿系列成矿规律与找矿方向[J]. 地球学报, 2023, 44(4):707-722.
[1] Shi Y B, Zeng Y, Li R, et al. Metallogenic series,regularities,and prospecting directions of rare metal gemstone deposits in west Yunnan[J]. Acta Geoscientica Sinica, 2023, 44(4):707-722.
[2] 游越新, 邓居智, 陈辉, 等. 综合物探方法在云南澜沧老厂多金属矿区深部找矿中的应用[J]. 物探与化探, 2023, 47(3):638-647.
[2] You Y X, Deng J Z, Chen H, et al. Application of integrated geophysical methods in deep ore prospecting of Laochang polymetallic mining area in Lancang,Yunnan[J] Geophysical and Geochemical Exploration, 2023, 47(3):638-647.
[3] 王瑞廷, 刘凯, 冀月飞, 等. 陕西柞水—山阳金铜银多金属矿集区典型矿床模型和找矿预测[J]. 地质通报, 2023, 42(6):895-908.
[3] Wang R T, Liu K, Ji Y F, et al. Typical deposit model and prospecting prediction of the Zhashui-Shanyang Au-Cu-Ag polymetallic ore-concentration area,Shaanxi Province[J]. Geological Bulletin of China, 2023, 42(6):895-908.
[4] 吴义布, 余君鹏, 司豪佳, 等. 甘肃阿克塞县变粒岩型铌钽矿综合找矿方法及找矿模型[J]. 地质与勘探, 2023, 59(3):570-579.
[4] Wu Y B, Yu J P, Si H J, et al. Comprehensive prospecting methods and model of the leptynite-type Nb-Ta deposit in Aksai County,Gansu Province[J]. Geology and Exploration, 2023, 59(3):570-579.
[5] 宋威方, 刘建中, 吴攀, 等. 构造地球化学弱信息提取方法在黔西南卡林型金矿找矿中的应用[J]. 物探与化探, 2022, 46(6):1338-1348.
[5] Song W F, Liu J Z, Wu P, et al. A successful application of the tectono-geochemistry weak information extraction method in the prospecting of Carlin-type gold deposits in southwestern Guizhou Province[J]. Geophysical and Geochemical Exploration, 2022, 46(6):1338-1348.
[6] 冯军, 张琪, 罗建民. 深度挖掘数据潜在价值提高找矿靶区定量优选精度[J]. 地学前缘, 2022, 29(4):403-411.
doi: 10.13745/j.esf.sf.2022.2.66
[6] Feng J, Zhang Q, Luo J M. Deeply mining the intrinsic value of geodata to improve the accuracy of predicting by quantitatively optimizing method for prospecting target areas[J] Earth Science Frontiers, 2022, 29 (4):403-411.
doi: 10.13745/j.esf.sf.2022.2.66
[7] 刘海飞, 柳建新, 刘嵘, 等. 激发极化法在有色金属矿产勘查中的研究进展[J]. 中国有色金属学报, 2023, 33(1):203-222.
[7] Liu H F, Liu J X, Liu R, et al. Research progress of induced polarization method in nonferrous metal mineral exploration[J]. The Chinese Journal of Nonferrous Metals, 2023, 33(1):203-222.
[8] 崔益安, 柳建新, 郭友军, 等. 电阻率法在有色金属矿产勘探中的研究进展[J]. 中国有色金属学报, 2023, 33(1):223-239.
[8] Cui Y A, Liu J X, Guo Y J, et al. Research progress of resistivity method in nonferrous metal mineral exploration[J]. The Chinese Journal of Nonferrous Metals, 2023, 33 (1):223-239.
[9] 任政勇, 柳建新, 岳国璇, 等. 重力与磁法在有色金属矿产勘探中的研究进展[J]. 中国有色金属学报, 2023, 33(1):21.
[9] Ren Z Y, Liu J X, Yue G X, et al. Research progress of gravity and magnetic methods in nonferrous metal mineral exploration[J]. The Chinese Journal of Nonferrous Metals, 2023, 33(1):21.
[10] 郭振威, 李方达, 柳建新, 等. 海洋有色金属矿产地球物理勘探进展[J]. 中国有色金属学报, 2023, 33(1):22.
[10] Guo Z W, Li F D, Liu J X, et al. Progress in geophysical exploration of marine nonferrous metal minerals[J]. The Chinese Journal of Nonferrous Metals, 2023, 33(1):22.
[11] 刘彦良, 高雅, 谢洪春, 等. 甘肃北山铅炉子沟地区金属矿成矿规律及矿产预测[J]. 地质与勘探, 2021, 57(2):269-280.
[11] Liu Y L, Gao Y, Xie H C, et al. Metallogenic regularity and mineral prediction of metal deposits in the qianluzigou zone,Beishan area,Gansu Province[J]. Geology and Exploration, 2021, 57(2):269-280.
[12] 窦小雨, 郭小刚, 周宏, 等. 甘肃白银厂铜多金属矿田地球化学场特征及信息提取[J]. 地质与勘探, 2022, 58(6):1139-1153.
[12] Dou X Y, Guo X G, Zhou H, et al. Geochemical field characteristics and information extraction of the Baiyinchang copper polymetallic ore field in Gansu Province[J]. Geology and Exploration, 2022, 58(6):1139-1153.
[13] 雷镇, 陶思源, 李波, 等. 湘南黄沙坪铜多金属矿床-256 m中段构造地球化学特征及找矿预测[J]. 中国有色金属学报, 2022, 32(9):2835-2855.
[13] Lei Z, Tao S Y, Li B, et al. Tectono-geochemistry characteristics and prospecting prediction of -256 m level tunnel of Huangshaping copper polymetallic deposit in Southern Hunan[J] The Chinese Journal of Nonferrous Metals, 2022, 32 (9):2835-2855.
[14] 赵吉昌, 范应, 雷一兰, 等. 构造地球化学岩屑测量在甘肃党河南山地区找金中的应用[J]. 物探与化探, 2021, 45(4):923-932.
[14] Zhao J C, Fan Y, Lei Y L, et al. The application of tectonogeochemical cuttings survey to gold prospecting in Nanshan area of Danghe,Gansu Province[J] Geophysical and Geochemical Exploration, 2021, 45 (4):923-932.
[15] 程志中, 袁慧香, 彭琳琳, 等. 基岩区寻找隐伏矿的地球化学方法:构造地球化学测量[J]. 地学前缘, 2021, 28(3):328-337.
doi: 10.13745/j.esf.sf.2021.1.20
[15] Cheng Z Z, Yuan H X, Peng L L, et al. A geochemical method for finding concealed ore deposits in bedrock outcrop area:Application of tectono-geochemical survey[J] Earth Science Frontiers, 2021, 28 (3):328-337.
[16] 熊盛青, 徐学义. 航空地球物理在战略性矿产勘查中的应用前景[J]. 地球科学与环境学报, 2023, 45(2):143-156.
[16] Xiong S Q, Xu X Y. Application prospect of aerogeophysics in strategic mineral exploration[J]. Journal of Earth Sciences and Environment, 2023, 45 (2):143-156.
[17] 金谋顺, 高永宝, 李侃, 等. 伟晶岩型稀有金属矿的遥感找矿方法——以西昆仑大红柳滩地区为例[J]. 西北地质, 2019, 52(4):222-231.
[17] Jin M S, Gao Y B, Li K, et al. Remote sensing prospecting method for pegmatite type rare metal deposit—Taking Dahongliutan area in western Kunlun for example[J]. Northwestern Geology, 2019, 52 (4):222-231.
[18] 李新年. 地质矿产勘查深部找矿方法的探讨[J]. 粘接, 2021, 46(5):133-136.
[18] Li X N. Discussion on deep prospecting methods for geological and mineral exploration[J]. Adhesion, 2021, 46 (5):133-136.
[19] Saleh G M, Kamar M S, Mohamed G A, et al. Petrochemistry,rare metals-bearing minerals and spectrometric exploration in Khour Abalea,Abu Rusheid area,Eastern Desert,Egypt[J]. Journal of African Earth Sciences, 2023,205:105005.
[20] Zuo L, Wang G W, Carranza E J M, et al. Short-wavelength infrared spectral analysis and 3D vector modeling for deep exploration in the weilasituo magmatic-hydrothermal Li-Sn polymetallic deposit,Inner Mongolia,NE China[J]. Natural Resources Research, 2022, 31(6):3121-3153.
[21] Chen J, Yang F C, Bedini E, et al. Application of the matched filtering method to study the stream sediment geochemistry and prospecting prediction of the Baiyun gold deposit,qingchengzi ore field,China[J]. Mining,Metallurgy & Exploration, 2024, 41(1):379-394.
[22] Hill E J, Fabris A, Uvarova Y, et al. Improving geological logging of drill holes using geochemical data and data analytics for mineral exploration in the Gawler Ranges,South Australia[J]. Australian Journal of Earth Sciences, 2023, 70(8):1067-1093.
doi: 10.1080/08120099.2021.1971763
[1] 宋威方, 刘建中, 吴攀, 李俊海, 王泽鹏, 杨成富, 谭亲平, 王大福. 构造地球化学弱信息提取方法在黔西南卡林型金矿找矿中的应用[J]. 物探与化探, 2022, 46(6): 1338-1348.
[2] 赵吉昌, 范应, 雷一兰, 姚宾宾. 构造地球化学岩屑测量在甘肃党河南山地区找金中的应用[J]. 物探与化探, 2021, 45(4): 923-932.
[3] 黄大正, 陈守余, 赵江南, 吴帅吉, 张毓策. 云南个旧老厂矿田东部大比例尺构造地球化学特征及找矿预测[J]. 物探与化探, 2020, 44(6): 1261-1275.
[4] 黄景孟, 熊意林, 张笑, 鲁显松, 周豹, 汪国虎. 南秦岭竹山县土地岭火山岩型钽铌矿综合找矿方法及找矿模型[J]. 物探与化探, 2020, 44(5): 1135-1143.
[5] 唐世新, 李建军, 马生明, 胡树起. 运积物覆盖区地球化学找矿方法——土壤热磁组分测量[J]. 物探与化探, 2019, 43(4): 749-757.
[6] 程兴国, 陈新, 闫红圃, 宋纳纳, 宁勇. 河南省方城县双山碱性正长岩型铌矿综合找矿方法及找矿模型[J]. 物探与化探, 2018, 42(2): 247-252.
[7] 杨鑫, 冉军林. 蒋家山沟金矿综合物、化探的找矿效果[J]. 物探与化探, 2016, 40(1): 40-45.
[8] 王磊, 韩润生, 王加昇. 地球化学勘查的新技术及发展趋势[J]. 物探与化探, 2015, 39(4): 686-690.
[9] 安国英. 青海省东昆仑中段地区构造地球化学特征及地质意义[J]. 物探与化探, 2015, 39(1): 69-75.
[10] 岑况, 刘秀丽, 彭珍, 陈媛. 地气溶胶勘查地球化学方法及其在金窝子金矿中的应用[J]. 物探与化探, 2014, 38(1): 18-22.
[11] 陈希泉, 陈颉, 罗先熔, 欧阳菲, 文美兰. 地气(氡气)测量方法寻找隐伏含矿断裂试验[J]. 物探与化探, 2011, 35(6): 817-820.
[12] 钱建平, 何胜飞, 王富民, 程金华. 安徽省廖家地区地质地球化学特征和构造地球化学找矿[J]. 物探与化探, 2008, 32(5): 519-524,528.
[13] 王君恒, 潘竹平, 郭雷, 张宏萄, 孟贵祥, 刘光海. 一个新的沉积变质型钛矿床的成矿模式及找矿方法[J]. 物探与化探, 2008, 32(3): 233-240.
[14] 刘振军, 王德发, 刘英才, 薛典军, 罗锦荣. 西藏一江两河地区东段磁场特征与金属矿产预测[J]. 物探与化探, 2007, 31(6): 529-534.
[15] 周奇明, 周立宏, 董树政. 电吸附找矿方法[J]. 物探与化探, 2004, 28(3): 199-201.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com