Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (5): 1424-1436    DOI: 10.11720/wtyht.2024.1574
  工程勘察 本期目录 | 过刊浏览 | 高级检索 |
等值反磁通瞬变电磁法在地下浅层富水区应用——以新余市下村镇为例
朱小伟1(), 丁辰2(), 薛凯喜3, 陈骏3, 韩凯敏4, 罗强1, 易光胜3
1.江西省建材产品质量监督检验站有限公司,江西 南昌 330001
2.深圳大学 土木与交通工程学院,广东 深圳 518060
3.东华理工大学 土木与建筑工程学院,江西 南昌 330013
4.广州城建职业学院 建筑工程学院,广东 广州 510925
Application of the opposing coils transient electromagnetic method in a shallow groundwater-rich area: A case study of Xiacun Town, Xinyu City
ZHU Xiao-Wei1(), DING Chen2(), XUE Kai-Xi3, CHEN Jun3, HAN Kai-Min4, LUO Qiang1, YI Guang-Sheng3
1. Jiangxi Building Materials Product Quality Supervision and Inspection Station Co. Ltd., Nanchang 330001, China
2. College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
3. School of Civil & Architecture Engineering, East China University of Technology, Nanchang 330013, China
4. School of Architectural Engineering, Guangzhou City Construction College, Guangzhou 510925, China
全文: PDF(7265 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

岩溶、软弱土及富水区等不良地质体在我国分布较广,强降雨作用下地质不良区域容易产生塌陷等地质灾害。新余市渝水区下村镇靠近沪昆高速铁路的区域出现了严重的地质塌陷,塌陷基坑周围空间受限且地下管线等干扰源较多,传统瞬变电磁法早期信号受收发线圈互感效应影响,存在探测精度低、抗干扰能力差等问题,并且还有明显的浅层盲区。为了查明该区域不良地质体的发育位置,并为地质灾害防治提供治理建议,本研究应用了等值反磁通瞬变电磁法(opposing coils transient electromagnetic method,OCTEM),并且辅以钻探验证,结果表明:OCTEM法具有较高的精确性,研究区地球物理成果与钻探结果一致性较好;研究区低电阻带分布范围较广,经实地钻孔验证,低电阻异常均为地下水引起;地层从上至下依次为软可塑粉质黏土—硬可塑粉质黏土—软塑粉质黏土—中风化灰岩;塌陷区域地下微承压水上涌,逐步侵蚀区域周边软可塑粉质黏土层,塌陷基坑内静水位面标高为55.60 m,位于地表下约1.4 m处;塌陷区域下方存在地下水通道,灰岩层在水流长时间冲刷侵蚀作用下形成土洞;长期抽取地下水可能会引起地下渗流区扩张发育,主体责任单位必须及时封堵塌陷区地下水,防止其进一步侵蚀周边松散土层。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱小伟
丁辰
薛凯喜
陈骏
韩凯敏
罗强
易光胜
关键词 等值反磁通瞬变电磁法浅层富水区钻孔验证    
Abstract

Unfavorable geobodies such as Karsts, weak soil, and water-rich areas are extensively distributed in China. Under heavy rainfall, they are prone to geologic hazards like collapse. A severe geological collapse occurred in Xiacun Town, Yushui District, Xinyu City, near the Shanghai-Kunming high-speed railway. The space around the collapsed foundation pit was limited, with many interference sources like underground pipelines. With early signals subjected to the mutual inductance effects of receiver and transmitter coils, the conventional transient electromagnetic method exhibited low detection accuracy and anti-interference ability, encountering significant shallow blind zones. To locate unfavorable geobodies in the study area and provide suggestions for the prevention and control of geologic hazards, this study innovatively applied the opposing-coils transient electromagnetic method (OCTEM), supplemented by borehole-based verification. The results show that: (1) The OCTEM exhibited high accuracy, as demonstrated by the high consistency between the geophysical exploration results and the drilling results of the study area; (2) The low-resistivity zone spread across the study area, and the low-resistivity anomalies revealed by geophysical exploration were caused by groundwater according to borehole-based verification; (3) The strata from top to bottom were composed of soft plastic silty clay, hard plastic silty clay, soft plastic silty clay, and moderately weathered limestones; (4) The subsurface micro-confined water in the collapse area surged upward, gradually eroding the soft plastic silty clay layer around the area. The static water level in the collapsed foundation pit manifested an elevation of 55.60 m, located approximately 1.4 m below the surface; (5) A groundwater channel existed under the collapse area, with soil caves formed in the limestone layer under the prolonged erosion effect of water flow; (6) Long-term groundwater extraction may expand the underground seepage zone; (7) The administrative department in charge must promptly contain groundwater in the collapse area to prevent it from further eroding the surrounding unconsolidated soil layer.

Key wordsopposing coils    transient electromagnetic method    shallow water-rich area    borehole-based verification
收稿日期: 2023-12-27      修回日期: 2024-03-31      出版日期: 2024-10-20
ZTFLH:  P642  
基金资助:国家自然科学基金项目“降雨型层状土质滑坡孕灾机理与灾变模式研究”(42167024);江西省自然科学基金项目(20192BAB206045);江西省教育厅科技项目(GJJ170485)
通讯作者: 丁辰(1997-),男,江西九江人,博士研究生,研究方向为地质灾害防治。Email:dchen479606571@foxmail.com
作者简介: 朱小伟(1998-),男,江西上饶人,硕士,研究方向为岩土工程。Email:1186851495@qq.com
引用本文:   
朱小伟, 丁辰, 薛凯喜, 陈骏, 韩凯敏, 罗强, 易光胜. 等值反磁通瞬变电磁法在地下浅层富水区应用——以新余市下村镇为例[J]. 物探与化探, 2024, 48(5): 1424-1436.
ZHU Xiao-Wei, DING Chen, XUE Kai-Xi, CHEN Jun, HAN Kai-Min, LUO Qiang, YI Guang-Sheng. Application of the opposing coils transient electromagnetic method in a shallow groundwater-rich area: A case study of Xiacun Town, Xinyu City. Geophysical and Geochemical Exploration, 2024, 48(5): 1424-1436.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1574      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I5/1424
Fig.1  地面塌陷现场
Fig. 2  下村镇及附近区域水文地质示意
Fig.3  下村镇及附近区域工程地质示意
1—黏土层含砂栎层(坡积、残积);2—亚黏土、砂砾石(冲积);3—水北组:石英岩、砂质页岩;4—安源群:细砂、粉砂岩;5—灰岩、白云岩;6—王潘里段:砂岩、泥岩;7—老山段:砂岩、泥岩;8—官山段:长石石英岩、粉砂岩;9—明山组:硅质岩、页岩;10—小江边组:瘤状灰岩、白云岩;11—地质界线;12—地构造线
Fig.4  OCTEM装置示意(a)和OCTEM双线圈源合成的一次场磁力线(b)[16]
Fig.5  等值反磁通瞬变电磁法现场工作
Fig.6  不同叠加次数对应的二次场衰减电压曲线
Fig.7  项目现场OCTEM测点布设
Fig.8  等值反磁通测点及钻孔位置布设
Fig.9  OCTEM数据处理流程
Fig.10  1号剖面反演剖面
Fig.11  2号剖面反演剖面
Fig.12  3号剖面反演剖面
Fig.13  4号剖面反演剖面
Fig.14  5号剖面反演剖面
Fig.15  6号剖面反演剖面
Fig.16  7号剖面反演剖面
Fig.17  物探剖面成果及钻孔柱状图
Fig.18  物探反演图与钻孔三维对比图
钻孔编号 孔深/m 孔口高程/m 地层埋深/m 岩性 地下水位
稳定深度/m
ZK1 15.6 57.38 0~1.5 粉质黏土:浅灰色,褐黄色,软弱可塑,切面光滑,稍有光泽,韧性中等,干强度中等,零星可见铁锰质结合及高岭土团块,形态主要呈现为黏、粉粒状 1.78
1.5~9.5 粉质黏土:浅灰色,褐黄色,硬可塑,切面光滑,稍有光泽,韧性中等,干强度中等,零星可见铁锰质结合及高岭土团块,形态主要呈现为黏、粉粒状,局部含有砂岩细砂砾
9.5~11.0 粉质黏土:浅灰色,褐黄色,软弱可塑,切面光滑,稍有光泽,韧性中等,干强度中等,零星可见铁锰质结合及高岭土团块,形态主要呈现为黏、粉粒状,局部含有砂岩、石英岩等细砂砾
11.0~15.3 粉质黏土:浅灰色,褐黄色,软塑,切面光滑,稍有光泽,韧性中等,干强度中等,可见铁锰质结合及高岭土团块,形态主要呈现为黏、粉粒状,局部含有砂岩、石英岩、花岗岩等中粗砂
15.3~15.6 中风化石灰岩:青灰色,隐晶质结构,薄中厚层状构造,矿物成分以碳酸钙为主,节理裂隙较发育,钙质充填,局部有溶蚀现象,岩心多呈现短柱状,局部呈现块状,少量长柱状,锤击声脆
ZK2 13.7 56.95 0~3.0 粉质黏土:浅灰色,褐黄色,软弱可塑,切面光滑,稍有光泽,韧性中等,干强度中等,零星可见铁锰质结合及高岭土团块,形态主要呈现为黏、粉粒状 1.35
3.0~5.9 粉质黏土:浅灰色,褐黄色,硬可塑,切面光滑,稍有光泽,韧性中等,干强度中等,零星可见铁锰质结合及高岭土团块,形态主要呈现为黏、粉粒状,局部含有砂岩细砂砾
5.9~8.2 粉质黏土:浅灰色,褐黄色,软弱可塑,切面光滑,稍有光泽,韧性中等,干强度中等,可见铁锰质结合及高岭土团块,形态主要呈现为黏、粉粒状,局部含有砂岩、石英岩等细砂砾
8.2~12.8 粉质黏土:浅灰色,褐黄色,软塑,切面光滑,稍有光泽,韧性中等,干强度中等,可见较多铁锰质结合及高岭土团块,形态主要呈现为黏、粉粒状,局部含有砂岩、石英岩、浅色变质岩等中粗砂
12.8~13.7 中风化石灰岩:青灰色,隐晶质结构,薄中厚层状构造,矿物成分以碳酸钙为主,节理裂隙较发育,钙质充填,局部有溶蚀现象,岩心多呈现短柱状,局部呈现块状,少量长柱状,锤击声脆
ZK3 19.2 57.36 0~3.0 粉质黏土:浅灰色,褐黄色,软弱可塑,切面光滑,稍有光泽,韧性中等,干强度中等,零星可见铁锰质结合及高岭土团块,形态主要呈现为黏、粉粒状 1.76
3.0~5.1 土洞:地下水填充
5.1~17.5 粉质黏土:浅灰色,褐黄色,软塑,切面光滑,稍有光泽,韧性中等,干强度中等,可见较多铁锰质结合及高岭土团块,形态主要呈现为黏、粉粒状,局部含有花岗岩、浅色变质岩等中粗砂
17.5~19.2 中风化石灰岩:青灰色,隐晶质结构,薄中厚层状构造,矿物成分以碳酸钙为主,节理裂隙较发育,钙质充填,局部有溶蚀现象,岩心多呈现短柱状,局部呈现块状,少量长柱状,锤击声脆
ZK4 11.3 56.77 0~1.0 素填土:浅灰色或浅红色,结构松散,均匀性较差,主要成分为粘性土,局部含有砾石和碎石,还有少量砼块,砂砾为近期平整场地所至,砼块为民房旧居拆除遗留 1.37
1.0~3.0 粉质黏土:浅灰色,褐黄色,软弱可塑,切面光滑,稍有光泽,韧性中等,干强度中等,零星可见铁锰质结合及高岭土团块,形态主要呈现为黏、粉粒状,局部含有砂岩细砂砾
ZK4 11.3 56.77 3.0~8.0 粉质黏土:浅灰色,褐黄色,硬可塑,切面光滑,稍有光泽,韧性中等,干强度中等,零星可见铁锰质结合及高岭土团块,形态主要呈现为黏、粉粒状,局部含有砂岩、石英岩等细砂砾 1.37
8.0~11.0 粉质黏土:浅灰色,褐黄色,软塑,切面光滑,稍有光泽,韧性中等,干强度中等,可见铁锰质结合及高岭土团块,形态主要呈现为黏、粉粒状,局部含有石英岩、花岗岩等中粗砂
11.0~11.3 中风化石灰岩:青灰色,隐晶质结构,薄中厚层状构造,矿物成分以碳酸钙为主,节理裂隙较发育,钙质充填,局部有溶蚀现象,岩心多呈现短柱状,局部呈现块状,少量长柱状,锤击声脆
ZK5 17.3 56.88 0~0.8 素填土:浅灰色或浅红色,结构松散,均匀性较差,主要成分为粘性土,局部含有砾石和碎石,还有少量砼块,砂砾为近期平整场地所至,砼块为民房旧居拆除遗留 1.28
0.8~3.0 粉质黏土:浅灰色,褐黄色,软弱可塑,切面光滑,稍有光泽,韧性中等,干强度中等,零星可见铁锰质结合及高岭土团块,形态主要呈现为黏、粉粒状,局部含有砂岩细砂砾
3.0~5.0 粉质黏土:浅灰色,褐黄色,硬可塑,切面光滑,稍有光泽,韧性中等,干强度中等,零星可见铁锰质结合及高岭土团块,形态主要呈现为黏、粉粒状,局部含有砂岩、石英岩等细砂砾
5.0~16.7 粉质黏土:浅灰色,褐黄色,软塑,切面光滑,稍有光泽,韧性中等,干强度中等,可见铁锰质结合及高岭土团块,形态主要呈现为黏、粉粒状,局部含有石英岩、花岗岩等中粗砂
16.7-17.3 中风化石灰岩:青灰色,隐晶质结构,薄中厚层状构造,矿物成分以碳酸钙为主,节理裂隙较发育,钙质充填,局部有溶蚀现象,岩心多呈现短柱状,局部呈现块状,少量长柱状,锤击声脆
Table 1  研究区地质钻探资料统计
[1] Gaur V P, Kar S K, Srivastava M. Development of ground fissures: A case study from southern parts of Uttar Pradesh,India[J]. Journal of the Geological Society of India, 2015, 86(6):671-678.
doi: 10.1007/s12594-015-0359-4
[2] 吴超凡, 邱占林, 杨为民, 等. 汶川地震诱发的地面塌陷成因[J]. 山地学报, 2012, 30(1):70-77.
[2] Wu C F, Qiu Z L, Yang W M, et al. Cause of ground collapse triggered by the Wenchuan earthquake[J]. Mountain Research, 2012, 30(1):70-77.
[3] 彭青阳. 综合物探方法在地面塌陷勘察中的应用[J]. 工程地球物理学报, 2017, 14(1):31-36.
[3] Peng Q Y. The application of integrated geophysical method toground collapse exploration[J]. Chinese Journal of Engineering Geophysics, 2017, 14(1):31-36.
[4] 胡让全, 黄健民. 综合物探方法在广州市金沙洲岩溶地面塌陷、地面沉降地质灾害调查中的应用[J]. 物探与化探, 2014, 38(3):610-615.
[4] Hu R Q, Huang J M. The application of integrated geophysical techniquestothe investigation of Karst graound collapse and ground subsidence in Jingshazhou area,Guangzhou City[J]. Geophysical and Geochemical Exploration, 2014, 38(3):610-615.
[5] 龚培俐, 李维. 瞬变电磁法在采空塌陷灾害中的应用——以神东煤矿采空区调查为例[J]. 地质力学学报, 2018, 24(3):416-423.
[5] Gong P L, Li W. Application of transient electromagnetic method in collapse hazard of goaf:Take the investigation of the goaf in Shendong coal mine as an example[J]. Journal of Geomechanics, 2018, 24(3):416-423.
[6] Ba X Z, Li L P, Wang J, et al. Near-surface site investigation and imaging of Karst cave using comprehensive geophysical and laser scanning:A case study in Shandong,China[J]. Environmental Earth Sciences, 2020, 79(12):298.
[7] 陈健强, 李雁川, 田浩, 等. 含水采空区全空间瞬变电磁响应分析[J]. 物探与化探, 2021, 45(2):546-550.
[7] Chen J Q, Li Y C, Tian H, et al. Whole-space transient electromagnetic detection of water-bearing goaf[J]. Geophysical and Geochemical Exploration, 2021, 45(2):546-550.
[8] Liu R, Sun H F, Qin J W, et al. A multi-geophysical approach to assess potential sinkholes in an urban area[J]. Engineering Geology, 2023,318:107100.
[9] Wang J, Zhang X P, Du L Z, et al. Comparing methods of 3D acquisition of simulated multi-electrode resistivity data using TOPSIS[J]. Journal of Applied Geophysics, 2018,159:631-639.
[10] 谢嘉, 刘洋, 李兴强, 等. 等值反磁通瞬变电磁法在岩溶塌陷区探测应用[J]. 煤田地质与勘探, 2021, 49(3):212-218,226.
[10] Xie J, Liu Y, Li X Q, et al. The application of Opposing Coils Transient Electromagnetics in the detection of Karst subsidence area[J]. Coal Geology & Exploration, 2021, 49(3):212-218,226.
[11] Solla M, Pérez-Gracia V, Fontul S. A review of GPR application on transport infrastructures:Troubleshooting and best practices[J]. Remote Sensing, 2021, 13(4):672.
[12] Börner R U. Numerical modelling in geo-electromagnetics:Advances and challenges[J]. Surveys in Geophysics, 2010, 31(2):225-245.
[13] Kalscheuer T, Juhojuntti N, Vaittinen K. Two-dimensional magnetotelluric modelling of ore deposits:Improvements in model constraints by inclusion of borehole measurements[J]. Surveys in Geophysics, 2018, 39(3):467-507.
[14] 张帆, 冯国瑞, 戚庭野, 等. 瞬变电磁法勘探煤矿不同层间距双层积水采空区的可行性研究[J]. 物探与化探, 2023, 47(5):1215-1225.
[14] Zhang F, Feng G R, Qi T Y, et al. Feasibility of the transient electromagnetic method in the exploration of double-layer waterlogged goafs with different layer spacings in coal mines[J]. Geophysical and Geochemical Exploration, 2023, 47(5):1215-1225.
[15] 高远. 等值反磁通瞬变电磁法在城镇地质灾害调查中的应用[J]. 煤田地质与勘探, 2018, 46(3):152-156.
[15] Gao Y. The application of opposing coils transient electromagnetics method in geological hazard investigation of town[J]. Coal Geology & Exploration, 2018, 46(3):152-156.
[16] 席振铢, 龙霞, 周胜, 等. 基于等值反磁通原理的浅层瞬变电磁法[J]. 地球物理学报, 2016, 59(9):3428-3435.
doi: 10.6038/cjg20160925
[16] Xi Z Z, Long X, Zhou S, et al. Opposing coils transient electromagnetic method forshallowsubsurfacedetection[J]. Chinese Journal of Geophysics, 2016, 59(9):3428-3435.
[17] 赖耀发. 基于等值反磁通的频率域电磁测深研究[D]. 长沙: 中南大学, 2022.
[17] Lai Y F. Research on frequency domain electromagnetic sounding based on equivalent anti-flux[D]. Changsha: Central South University, 2022.
[18] 姚富宝. 基于OCTEM法的城市道路塌陷地质病害风险评估[D]. 长沙: 中南大学, 2022.
[18] Yao F B. Risk assessment of urban road collapse geological diseases based on OCTEM method[D]. Changsha: Central South University, 2022.
[19] 赵虎, 王玲辉, 程强, 等. 等值反磁通瞬变电磁成像技术及工程应用[J]. 地球物理学进展, 2021, 36(5):2244-2250.
[19] Zhao H, Wang L H, Cheng Q, et al. Opposing coils transient electromagnetics imaging technology and engineering application[J]. Progress in Geophysics, 2021, 36(5):2244-2250.
[20] 王亮, 龙霞, 王婷婷, 等. 等值反磁通瞬变电磁法在城市浅层空洞探测中的应用[J]. 物探与化探, 2022, 46(5):1289-1295.
[20] Wang L, Long X, Wang T T, et al. Application of theopposing-coils transient electromagnetic method in detectionofurbanshallowcavities[J]. Geophysical and Geochemical Exploration, 2022, 46(5):1289-1295.
[21] Xi Z Z, Long X, Huang L, et al. Opposing-coils transient electromagnetic method focused near-surface resolution[J]. Geophysics, 2016, 81(5):E279-E285.
[22] 何胜, 王万平, 董高峰, 等. 等值反磁通瞬变电磁法在城市地质调查中的应用[J]. 物探与化探, 2023, 47(5):1379-1386.
[22] He S, Wang W P, Dong G F, et al. Application of theopposing-coils transient electromagnetic method in urban geological surveys[J]. Geophysical and Geochemical Exploration, 2023, 47(5):1379-1386.
[23] 肖皇屿. 基于BIM+GIS的地质灾害监测预警平台的研究与实现[D]. 成都: 西南交通大学, 2021.
[23] Xiao HY. Research and implementation of geological disaster monitoring and early warning platform based on BIM+GIS[D]. Chengdu: Southwest Jiaotong University, 2021.
[24] Zhang J L, Xiang X B, Li W J. Advances in marine intelligent electromagnetic detection system,technology,and applications:A review[J]. IEEE Sensors Journal, 2023, 23(5):4312-4326.
[25] Sun X M, Wang Y F, Yang X, et al. Three-dimensional transient electromagnetic inversion with optimal transport[J]. Journal of Inverse and Ill-Posed Problems, 2021, 30(4):549-565.
[26] 任喜荣, 李欣, 周志杰. 等值反磁通瞬变电磁法在金矿采空区探测中的应用[J]. 物探与化探, 2023, 47(2):540-546.
[26] Ren X R, Li X, Zhou Z J. Application of the opposing coils transient electromagnetic method in investigation of mined-out areas of a gold deposit[J]. Geophysical and Geochemical Exploration, 2023, 47(2):540-546.
[27] Wang Y, Xi Z Z, Jiang H, et al. The application research on the detection of karst disease of airport runway based on OCTEM[J]. Geophysical and Geochemical Exploration, 2017, 41(2):360-363.
[28] 杨建明, 王洪昌, 沙椿. 基于等值反磁通瞬变电磁法的岩溶探测分析[J]. 物探与化探, 2018, 42(4):846-850.
[28] Yang J M, Wang H C, Sha C. An analysis of Karst exploration based on opposing coils transient electromagnetic method[J]. Geophysical and Geochemical Exploration, 2018, 42(4):846-850.
[29] Yang Y, Song X F, Zheng F D, et al. Simulation of fully coupled finite element analysis of nonlinear hydraulic properties in land subsidence due to groundwater pumping[J]. Environmental Earth Sciences, 2015, 73(8):4191-4199.
[30] Jia L, Meng Y, Li L J, et al. A multidisciplinary approach in cover-collapse sinkhole analyses in the mantle Karst from Guangzhou City (SE China)[J]. Natural Hazards, 2021, 108(1):1389-1410.
[31] 廖德武, 冉根领, 杜艳松, 等. 瞬变电磁法在岩溶地下水运移通道勘探中的应用研究[J]. 地下水, 2023, 45(6):136-139.
[31] Liao D W, Ran G L, Du Y S, et al. Application of transient electromagnetic method in exploration of Karst groundwater migration channels[J]. Ground Water, 2023, 45(6):136-139.
[32] 吴群英, 胡雄武, 王宏科. 陕北矿区地下水资源地面瞬变电磁法探查实践[J]. 煤炭科学技术, 2022, 50(5):208-215.
[32] Wu Q Y, Hu X W, Wang H K. Exploration practice of ground transient electromagnetic method for groundwater resources in Northern Shaanxi coal mining area[J]. Coal Science and Technology, 2022, 50(5):208-215.
[33] 代昱昊, 王华, 彭桂彬. 基于TEM的玉磨铁路隧道渗漏水状态预测方法研究[J]. 重庆交通大学学报:自然科学版, 2021, 40(7):88-92,144.
[33] Dai Y H, Wang H, Peng GB. Prediction method of leakage state in the Yuxi-Mohan railway tunnel based on TEM[J]. Journal of Chongqing Jiaotong University:Natural Science, 2021, 40(7):88-92,144.
[34] Li R H, Hu X Y, Xu D, et al. Characterizing the 3D hydrogeological structure of a debris landslide using the transient electromagnetic method[J]. Journal of Applied Geophysics, 2020,175:103991.
[1] 薛国强. 短偏移距瞬变电磁法探测技术与应用研究新进展[J]. 物探与化探, 2024, 48(5): 1165-1168.
[2] 饶丽婷, 武欣, 郭睿, 党博, 党瑞荣. 基于监督下降法的短偏移距瞬变电磁快速反演研究[J]. 物探与化探, 2024, 48(5): 1199-1207.
[3] 黄仕茂, 杨光, 王军成, 罗传根, 徐明钻, 周楠楠, 赵鹏. SOTEM在厚覆盖煤矿采空区探测中的应用实例[J]. 物探与化探, 2024, 48(5): 1208-1214.
[4] 李贺, 李貅, 戚志鹏, 曹华科. 孔—巷瞬变电磁隧道不良地质体超前预报方法研究[J]. 物探与化探, 2024, 48(5): 1215-1222.
[5] 周钟航, 张莹莹. 山峰对电性源地面瞬变电磁响应的影响及校正方法[J]. 物探与化探, 2023, 47(5): 1236-1249.
[6] 邢涛, 王垚, 李建慧. 基于B样条插值的瞬变电磁响应一维精确计算[J]. 物探与化探, 2023, 47(5): 1316-1325.
[7] 何胜, 王万平, 董高峰, 南秀加, 魏丰丰, 白勇勇. 等值反磁通瞬变电磁法在城市地质调查中的应用[J]. 物探与化探, 2023, 47(5): 1379-1386.
[8] 吴国培, 张莹莹, 赵华亮, 周钟航, 李医滨. 基于横向约束的中心回线瞬变电磁一维反演[J]. 物探与化探, 2023, 47(4): 1024-1032.
[9] 王仕兴, 何可, 尹小康, 魏栋华, 赵思为, 郭明. 半航空瞬变电磁一维聚焦反演研究[J]. 物探与化探, 2023, 47(2): 410-419.
[10] 罗术, 陈争玉, 蓝宇骋, 刘阳飞, 段明杰. 等值反磁通瞬变电磁法探测滑坡堆积体的应用[J]. 物探与化探, 2023, 47(2): 523-529.
[11] 任喜荣, 李欣, 周志杰. 等值反磁通瞬变电磁法在金矿采空区探测中的应用[J]. 物探与化探, 2023, 47(2): 540-546.
[12] 亓庆新, 席振铢, 徐昱, 木仁. 等值反磁通瞬变电磁法天线零磁通面位置的确定方法[J]. 物探与化探, 2022, 46(6): 1540-1544.
[13] 张文波, 张莹, 李建慧. 地面回线源瞬变电磁法一维反演系统及其应用[J]. 物探与化探, 2022, 46(5): 1258-1266.
[14] 王亮, 龙霞, 王婷婷, 席振铢, 陈兴朋, 钟明峰, 董志强. 等值反磁通瞬变电磁法在城市浅层空洞探测中的应用[J]. 物探与化探, 2022, 46(5): 1289-1295.
[15] 吴北辰, 潘洋润奕, 程久龙, 王辉, 姚娣, 庞肖颖. 瞬变电磁法超小线圈并联式发射回线设计实验[J]. 物探与化探, 2022, 46(4): 934-939.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com