Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (5): 1409-1423    DOI: 10.11720/wtyht.2024.1354
  工程勘察 本期目录 | 过刊浏览 | 高级检索 |
基于微渗漏机制的甲烷氡气异常特征及其在煤矿隐蔽致灾因素勘探中的意义
贺会策1,2(), 孙春岩3(), 唐侥4, 张宗庆5, 冶北北5, 赵浩6, 王栋琳6
1.中国地质调查局 广州海洋地质调查局三亚南海地质研究所,海南 三亚 572024
2.自然资源部海底矿产资源重点实验室,广东 广州 511458
3.中国地质大学(北京) 工程技术学院,北京 100083
4.中国地质调查局 长沙自然资源综合调查中心,湖南 长沙 410600
5.天津华北地质勘查局 核工业二四七大队,天津 301800
6.中国地质调查局 西安矿产资源调查中心,陕西 西安 710100
Methane and radon anomaly characteristics derived based on the microleakage mechanism and their implications for the exploration of hidden disaster-causing factors in coal mines
HE Hui-Ce1,2(), SUN Chun-Yan3(), TANG Yao4, ZHANG Zong-Qing5, YE Bei-Bei5, ZHAO Hao6, Wang Dong-Lin6
1. Sanya Institute of South China Sea Geology, Guangzhou Marine Geological Survey, China Geological Survey, Sanya 572024, China
2. Key Laboratory of Marine Mineral Resoures, Ministry of Natural Resources, Guangzhou 511458, China
3. School of Engineering and Technology, China University of Geosciences(Beijing), Beijing 100083, China
4. Changsha Natural Resources Comprehensive Survey Center, China Geological Survey, Changsha 410600, China
5. The Nuclear Industry 247 Brigade of Tianjin North China Geological Exploration Bureau,Tianjin 301800, China
6. Xi'an Center of Mineral Resources Survey, China Geological Survey, Xi'an 710100, China
全文: PDF(14480 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

煤矿隐蔽致灾因素是指隐伏在煤层及其围岩内不易直接发现而开采过程中可能诱发矿山灾难的地质构造和不良地质体。甲烷和氡气是煤矿中常见的有害气体,其异常释放往往伴随着煤层的不良构造与瓦斯聚集等隐蔽灾害。本文以阳泉新元煤矿为工作区,首次基于微渗漏机制,优选了对隐蔽致灾地质因素敏感性强的甲烷、氡气两种地球化学指标,探讨土壤甲烷和氡气指标地球化学异常特征对煤矿隐蔽致灾因素的指示作用,通过动态监测(408个点位的土壤游离烃甲烷与氡气指标)和面积测量(416个点位的土壤游离烃甲烷、酸解烃甲烷指标以及651个点位的土壤氡气指标)的实测数据,获取了下伏含水破碎带、煤层气渗漏带、微构造裂隙带、陷落柱环绕带等致灾因素分布的地球化学响应特征;同时与广域电磁法开展联合勘探分析,完成煤矿构造类、瓦斯聚集类隐蔽致灾因素的验证识别,推测圈定出工作区潜在致灾因素的分布区段,验证了烃类微渗漏理论在煤矿隐蔽致灾因素勘探中的适用性与实用性,为甲烷、氡气地球化学指标在煤矿隐蔽致灾因素普查勘探中的广泛应用奠定了基础,对于提高煤矿安全生产具有重要意义。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
贺会策
孙春岩
唐侥
张宗庆
冶北北
赵浩
王栋琳
关键词 煤矿隐蔽致灾因素酸解烃游离烃土壤氡气动态监测山西阳泉新元煤矿    
Abstract

Hidden disaster-causing factors in coal minesdenote the geological structures and unfavorable geobodies that are concealed in coal seams and surrounding rocks and may cause mine disasters during mining. Methane and radon are common harmful gases in coal mines, and their abnormal release is often accompanied by hidden disasters like unfavorable structures of coal seams and gas accumulation. With the Xinyuan coal mine in Yangquan City as the study area, this study selected two geochemical indices based on the microseepage mechanism:Methane and radon, which are highly sensitive to hidden disaster-causing geological factors. Building on the dynamic monitoring data of methane and radon in free hydrocarbons at 408 points, and the area survey data of methane in free and acid-hydrolyzed hydrocarbons at 416 points and soil radon at 651 points, this study obtained the geochemical characteristics reflecting the distributions of disaster-causing factors like the underlying water-bearing fracture zones, coal bed methane see page zones, microstructural fracture zones, and collapse column surround zones. Moreover, this study conducted joint exploration and analysis combined with the wide-field electromagnetic method, completing the verification and identification of hidden disaster-causing factors related to structures and gas accumulation in coal mines. Furthermore, it delineated the distribution sections of potential disaster-causing factors in the study area. This study demonstrates the applicability and practicability of the hydrocarbon microseepage theory in the exploration of hidden disaster-causing factors in coal mines. It also lays a foundation for the extensive application of methane-radon geochemical indices in the survey and exploration of hidden disaster-causing factors in coal mines, thus holding critical significance for enhancing the safety of coal mine production.

Key wordshidden disaster-causing factors in coal mines    acid-hydrolyzed hydrocarbon    free hydrocarbon    soil radon    dynamic monitoring    Xinyuan coal mine in Yangquan City, Shanxi Province
收稿日期: 2024-07-10      修回日期: 2024-09-24      出版日期: 2024-10-20
ZTFLH:  P618.11  
  P631  
基金资助:国家重点研发计划项目(2018YFC0807800);自然资源部海底矿产资源重点实验室开放基金课题(KLMMR-2018-A-05)
通讯作者: 孙春岩(1952-),女,中国地质大学(北京)教授、博士生导师,长期从事石油天然气、海洋天然气水合物资源的地球物理、地球化学方法技术的研究和教学科研工作。Email: suncy@cugb.edu.cn
作者简介: 贺会策(1992-),男,工程师, 2017年研究生毕业于中国地质大学(北京)工程技术学院,主要从事海洋地质调查和天然气水合物环境调查评价工作。Email: hehuice@mail.cgs.gov.cn
引用本文:   
贺会策, 孙春岩, 唐侥, 张宗庆, 冶北北, 赵浩, 王栋琳. 基于微渗漏机制的甲烷氡气异常特征及其在煤矿隐蔽致灾因素勘探中的意义[J]. 物探与化探, 2024, 48(5): 1409-1423.
HE Hui-Ce, SUN Chun-Yan, TANG Yao, ZHANG Zong-Qing, YE Bei-Bei, ZHAO Hao, Wang Dong-Lin. Methane and radon anomaly characteristics derived based on the microleakage mechanism and their implications for the exploration of hidden disaster-causing factors in coal mines. Geophysical and Geochemical Exploration, 2024, 48(5): 1409-1423.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1354      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I5/1409
Fig.1  煤系隐蔽致灾因素与地球化学指标的关系示意
Fig.2  工作区区域地质
Fig.3  地球化学勘查测量点位布署
Fig.4  1120和1125测线广域电磁法反演地电剖面解释
土壤游离烃甲烷第一次测量数据统计特征(2020.11.02~11.07)
线号 点数 最大值/10-6 最小值/10-6 均值/10-6 标准差/10-6 异常下限/10-6
1120 51.0 247.10 16.32 86.39 54.22 140.62
1125 51.0 328.00 22.35 120.33 69.60 189.93
土壤游离烃甲烷第二次测量数据统计特征(2020.12.12~12.13)
线号 点数 最大值/10-6 最小值/10-6 均值/10-6 标准差/10-6 异常下限/10-6
1120 51.0 318.10 11.83 77.77 62.91 140.68
1125 51.0 278.50 13.36 80.06 65.81 145.87
土壤游离烃甲烷第三次测量数据统计特征(2021.03.12~03.15)
线号 点数 最大值/10-6 最小值/10-6 均值/10-6 标准差/10-6 异常下限/10-6
1120 51.0 314.80 10.94 73.40 66.53 139.92
1125 51.0 261.30 12.01 76.07 57.08 133.88
土壤游离烃甲烷第四次测量数据统计特征(2021.04.07~04.08)
线号 点数 最大值/10-6 最小值/10-6 均值/10-6 标准差/10-6 异常下限/10-6
1120 51.0 112.70 6.69 45.93 25.72 71.66
1125 51.0 155.20 8.72 45.21 33.07 78.28
Table 1  动态监测剖面土壤游离甲烷4次测量数值统计特征
土壤氡气第一次测量数据统计特征(2020.11.07~11.11)
线号 点数 最大值/
(Bq·m-3)
最小值/
(Bq·m-3)
均值/
(Bq·m-3)
标准差/
(Bq·m-3)
异常下限/
(Bq·m-3)
1120 51.0 23714.7 895.5 6792.5 4252.4 11044.9
1125 51.0 16778.4 1590.1 6472.0 2770.9 9242.9
土壤氡气第二次测量数据统计特征(2020.12.14~12.19)
线号 点数 最大值/
(Bq·m-3)
最小值/
(Bq·m-3)
均值/
(Bq·m-3)
标准差/
(Bq·m-3)
异常下限/
(Bq·m-3)
1120 51.0 27809.7 1757.2 10876.2 6994.5 17870.7
1125 51.0 24117.3 1331.2 9524.5 5425.4 14949.9
土壤氡气第三次测量数据统计特征(2021.03.07~03.14)
线号 点数 最大值/
(Bq·m-3)
最小值/
(Bq·m-3)
均值/
(Bq·m-3)
标准差/
(Bq·m-3)
异常下限/
(Bq·m-3)
1120 51.0 24819.6 1962.7 11593.4 5484.9 17078.3
1125 51.0 21025.9 1726.6 10352.8 4551.6 14904.4
土壤氡气第四次测量数据统计特征(2021.4.9~2021.4.13)
线号 点数 最大值/
(Bq·m-3)
最小值/
(Bq·m-3)
均值/
(Bq·m-3)
标准差/
(Bq·m-3)
异常下限/
(Bq·m-3)
1120 51.0 27322.1 3465.4 8747.4 4792.8 13540.2
1125 51.0 21071.9 3977.6 8754.8 3939.6 12694.4
Table 2  动态监测剖面土壤氡气4次测量数值统计特征
Fig.5  1120和1125测线土壤游离甲烷4次动态测量联合剖面
Fig.6  1120和1125测线土壤氡气4次动态监测联合剖面
Fig.7  1120测线甲烷氡气综合异常与广域电磁反演解释剖面叠合
Fig.8  1125测线甲烷氡气综合异常与广域电磁反演解释剖面叠合
指标 点数 工作区面积/km2 最高值 最低值 均值 标准差 异常下限 衬度
氡气 651 1.5 24783.05 940.45 7106.55 2437.84 9000.00 3.49
游离烃甲烷 416 1.5 400.00 7.48 89.20 66.11 150.00 4.48
酸解烃甲烷 416 1.5 5475.00 36.17 1655.80 1059.85 2600.00 3.30
Table 3  面积测量工区地球化学指标数值统计特征
背景值/(Bq·m-3) 异常下限/(Bq·m-3) 外带异常/(Bq·m-3) 中带异常/(Bq·m-3) 内带异常/(Bq·m-3)
计算值 4406.43 9275.68 9275.68~14151.36 14151.36~19027.04 ≥19027.04
使用值 4400.00 9000.00 9000.00~14000.00 14000.00~19000.00 ≥19000.00
Table 4  土壤氡气异常下限及浓度分带计算和实际划分值
Fig.9  游离烃甲烷浓度异常分布
Fig.10  酸解烃甲烷浓度异常分布
Fig.11  土壤氡气浓度梯度变化等值线
Fig.12  广域电磁法反演水平切片及甲烷氡气指标综合异常
[1] 国家安全监管总局. 国家煤矿安监局关于印发煤矿地质工作规定的通知(安监总煤调〔2013〕135号)[N/OL]. 国家安全生产监督管理总局国家煤矿安全监察局公告, 2013.12.31. http://www.mem.gov.cn/gk/gwgg/agwzlfl/gfxwj/2014/201401/t20140117_242920.shtml
[1] State Administration of Safety Supervision. Coal mine safety administration on the issuance of coal mine geological work regulations notice (State Administration of Coal Mine Safety (2013) No.135)[N/OL]. State Administration of Work Safety State Coal Mine Safety Administration Announcement,2013.12.31. http://www.mem.gov.cn/gk/gwgg/agwzlfl/gfxwj/2014/201401/t20140117_242920.shtml
[2] 国家安全生产监督管理总局信息研究院. 煤矿隐蔽致灾因素与探查[M]. 北京: 煤炭工业出版社, 2014.
[2] State Administration of Work Safety Information Research Institute. Hidden disaster factors and exploration in coal mine[M]. Beijing: Coal Industry Press, 2014.
[3] 张群, 张培河, 孙四清, 等. 煤矿地质工作规定释义[M]. 北京: 煤炭工业出版社,2014:48-81.
[3] Zhang Q, Zhang P H, Sun S Q, et al. Interpretation of coal mine geological work regulations[M]. Beijing: Coal Industry Press,2014:48-81.
[4] 黄金, 金明超, 武天红. 瑞平贾岭南煤业隐蔽致灾地质因素探查与防控[J]. 能源技术与管理, 2021, 46(2):133-135.
[4] Huang J, Jin M C, Wu T H., Exploration and prevention of hidden geological factors of disaster in Jialing South Coal industry in Ruiping[J]. Energy Technology and Management, 2021, 46(2):133-135.
[5] 刘海涛, 张帆. 霍州煤电晋北矿区隐蔽致灾地质因素及防治措施[J]. 山西煤炭, 2021, 41(3):109-115.
[5] Liu H T, Zhang F. Hidden disaster-causing geological factors and control measures in Jinbei mining area of Huozhou coal electricity group[J]. Shanxi Coal, 2021, 41(3):109-115.
[6] Battig E, Schijns H, Grant M, et al. High-productivity, high-resolution 3D seismic surveys for open-cut coal operations[J]. ASEG Extended Abstracts, 2019(1):1-4.
[7] 段建华, 许超. 地面物探技术在煤矿隐蔽致灾地质因素探测中的应用[J]. 中国煤炭地质, 2015, 27(10):53-57.
[7] Duan J H, Xu C. Application of surface geophysical prospecting in coalmine hidden hazard factor detection[J]. Coal Geology of China, 2015, 27(10):53-57.
[8] 侯泽明, 杨德义. 山西煤矿采区高密度三维地震勘探综述[J]. 煤田地质与勘探, 2020, 48(6):15-24.
[8] Hou Z M, Yang D Y. Summary of high density 3Dseismic exploration in the mining districts of coal mines in Shanxi Province[J]. Coal Geology & Exploration, 2020, 48(6):15-24.
[9] 李帝铨, 肖教育, 张继峰, 等. WFEM与CSAMT在新元煤矿富水区探测效果对比[J]. 物探与化探, 2021, 45(5):1359-1366.
[9] Li D Q, Xiao J Y, Zhang J F, et al. Comparison of application effects of WFEM and CSAMT in water-rich area of Xinyuan coal mine[J]. Geophysical and Geochemical Exploration, 2021, 45(5) : 1359-1366.
[10] 李金刚, 李伟. 三维地震技术在布尔台煤矿四盘区中的勘探应用[J]. 煤炭科学技术, 2021, 49(S2):247-251.
[10] Li J G, Li W. Application of 3D seismic technology to exploration in fourth panel of Buertai Coalfield[J]. Coal Science and Technology, 2021, 49(S2):247-251.
[11] 刘国勇, 杨明瑞, 王永刚. 高密度电法在煤矿积水采空区探测中的应用[J]. 矿业安全与环保, 2019, 46(5):90-94.
[11] Liu G Y, Yang M R, Wang Y G. Application of high density resistivity method for water accumulated goaf detection in coal mine[J]. Mining Safety & Environmental Protection, 2019, 46(5):90-94.
[12] 屈花荣, 沈永坤. 综合物勘方法在煤矿隐蔽致灾地质因素探查中的应用研究[J]. 煤炭与化工, 2022, 45(1):87-91.
[12] Qu H R, Shen Y K. Application research of comprehensive physical exploration method in exploration of geological factors hiddenly causing damage in coal mine[J]. Coal and Chemical Industry, 2022, 45(1):87-91.
[13] 任予鑫, 康向南, 马昆, 等. 瞬变电磁法在矿井水探查中的应用[J]. 现代矿业, 2022, 38(2):237-241.
[13] Ren Y X, Kang X N, Ma K, et al. Application of transient electromagnetic method in mine water exploration[J]. Modern Mining, 2022, 38(2):237-241.
[14] 薛国强, 李海, 陈卫营, 等. 煤矿含水体瞬变电磁探测技术研究进展[J]. 煤炭学报, 2021, 46(1):77-85.
[14] Xue G Q, Li H, Chen W Y, et al. Progress of transient electromagnetic detection technology for water-bearing bodies in coal mines[J]. Journal of China Coal Society, 2021, 46(1):77-85.
[15] 郑金宝, 李运肖. 三维地震物探技术在宁夏金凤煤矿三分区勘探中的应用研究[J]. 能源与环保, 2022, 44(3):81-86.
[15] Zheng J B, Li Y X. Application of three-dimensional seismic geophysical exploration technology in exploration of Ningxia Jinfeng coal mine[J]. China Energy and Environmental Protection, 2022, 44(3):81-86.
[16] Li D, Zhang Q. Application of the wide field electromagnetic method for oil and gas exploration in a red-bed basin of South China[J]. Journal of Environmental &Engineering Geophysics, 2021(1):26.
[17] Gresov A I, Obzhirov A I, Yatsuk A V, et al. Gas content of bottom sediments and geochemical indicators of oil and gas on the shelf of the East Siberian Sea[J]. Russian Journal of Pacific Geology, 2017, 11(4):308-314.
[18] Gresov A I, Yatsuk A V. Geochemistry and genesis of hydrocarbon gases of the Chaun Depression and Ayon Sedimentary Basin of the East Siberian Sea[J]. Russian Journal of Pacific Geology, 2020, 14(1):87-96.
[19] 李武, 王国建, 蒋涛, 等. 塔里木盆地玉北地区活动态油气化探指标应用效果分析[J]. 物探与化探, 2022, 46(2):296-303.
[19] Li W, Wang G J, Jiang T, et al. Application of the mobile form indicators ingeochemical prospecting of hydrocarbons in Yubei area,Tarim Basin[J]. Geo-physical and Geochemical Exploration, 2022, 46(2):296-303.
[20] 王国建, 程同锦, 卢丽, 等. 烃类垂向微渗漏近地表显示与运移通道的关系——以苏北盆地盐城凹陷朱家墩气田为例[J]. 石油实验地质, 2008(3):302-306.
[20] Wang G J, Cheng T J, Lu L, et al. Relationship between near-surface expressions of hydrocarbon microseepage and migration pathways—A case study in the Zhujiadun gas field,the Yancheng Sag,the northern Jiangsu Basin[J]. Petroleum Geology &experiment, 2008(3):302-306.
[21] 王国建, 卢丽, 杨俊, 等. 壤中游离气方法及其在油气化探中的应用[J]. 物探与化探, 2021, 45(1):11-17.
[21] Wang G J, Lu L, Yang J, et al. The soil gas method and its application to geochemical prospecting for oil and gas[J]. Geophysical and Geochemical Exploration, 2021, 45(1):11-17.
[22] YatsukA V, GresovA I, et al. Gas-geochemical anomalies of hydrocarbon gases in the bottom sediments of the Lomonosov Ridge and Podvodnikov Basin of the Arctic Ocean[J]. Doklady Earth Sciences, 2022, 501(2):1081-1086.
[23] 孙春岩, 赵浩, 贺会策, 等. 洞庭盆地生物气地球化学勘探及资源远景评价[J]. 物探与化探, 2018, 42(1):1-13.
[23] Sun C Y, Zhao H, He H C, et al. Geochemical exploration and resource potential evaluation of biogenic gas in Dongting Lake Basin[J]. Geophysical and Geochemical Exploration, 2018, 42(1):1-13.
[24] 周亚龙, 张富贵, 杨志斌, 等. 祁连山冻土区天然气水合物游离气测量技术试验[J]. 物探与化探. 2017, 41(6):1075-1080.
[24] Zhou Y L, Zhang F G, Yang Z B, et al. Test of natural hydrate free-gas measuring technique in permafrost region of Qilian Mountain[J]. Geophysical and Geochemical Exploration, 2017, 41(6):1075-1080.
[25] 孙春岩, 赵浩, 贺会策, 等. 海洋底水原位探测技术与中国南海天然气水合物勘探[J]. 地学前缘, 2017, 24(6):225-241.
doi: 10.13745/j.esf.yx.2016-12-2
[25] Sun C Y, Zhao H, He H C, et al. In-situ detection of ocean floor seawater and gashydrate exploration in the South China Sea[J]. Earth Science Frontiers, 2017, 24(6):225-241.
[26] 孙春岩, 王栋琳, 张仕强, 等. 深海甲烷电化学原位长期监测技术及其在海洋环境调查和天然气水合物勘探中的意义[J]. 物探与化探, 2019, 43(01):1-16.
[26] Sun C Y, Wang D L, Zhang S Q, et al. Deep sea methane electrochemical in-situ long-term monitoring technology and its significance in the ocean environmental investigation and gas hydrate exploration[J]. Geophysical and Geochemical Exploration, 2019, 43(1):1-16.
[27] 陈安定, 李剑锋. 天然气运移的地球化学指标研究[J]. 天然气地球科学, 1994, 5(4):38-67.
doi: 10.11764/j.issn.1672-1926.1994.04.38
[27] Chen A D, Li J F. Study on geochemical indexes of natural gas migration[J]. Natural Gas Geoscience, 1994, 5(4):38-67.
[28] 李宗亮, 蒋有录. 天然气运移地球化学示踪方法及其应用[J]. 新疆石油地质, 2008, 29(6):753-755.
[28] Li Z L, Jiang Y L. Methods and applications of geochemical trace for natural gas migration[J]. Xinjiang Petroleum Geology, 2008, 29(6):753-755.
[29] 宋岩, 徐永昌. 天然气成因类型及其鉴别[J]. 石油勘探与开发, 2005, 32(4):24-29.
[29] Song Y, Xu Y C. Origin and identification of natural gases[J]. Petroleum Exploration and Development, 2005, 32(4):24-29.
[30] 赵克斌, 孙长青. 油气化探在天然气勘探中的应用[J]. 石油实验地质, 2004, 26(6):574-579.
[30] Zhao K B, Sun C Q. Application of hydrocarbon geochemical exploration technique in natural gas exploration[J]. Petroleum Geology & Experiment, 2004, 26(6):574-579.
[31] 王俊峰. 煤地下自燃时覆岩中氡气运移规律及应用研究[D]. 太原: 太原理工大学, 2010.
[31] Wang J F. Radon migration in overlying strata during spontaneous combustion of coal underground and its application[D]. TaiYuan: Taiyuan University of Technology, 2010.
[32] 苏彦丁, 李淑燕, 李建国. 氡气放射性测量在煤矿采空区探测中的应用[J]. 中国煤炭地质, 2015, 27(10):70-75.
[32] Su YD, Li S Y, Li J G. Application of radon radioactivity measurement in coalmine gob area detection[J]. Coal Geology of China, 2015, 27(10):70-75.
[33] 张俊英, 方熙杨, 王海宾, 等. 基于同位素测氡的煤矿火区圈划方法对比研究[J]. 中国安全科学学报, 2021, 31(1): 38-44.
doi: 10.16265/j.cnki.issn 1003-3033.2021.01.006
[33] Zhang J Y, Fang X Y, Wang H B, et al. Comparative study of coal mine fire areas zoning methods based on isotopic radon measurement technique[J]. China Safety Science Journal, 2021, 31(1):38-44.
doi: 10.16265/j.cnki.issn 1003-3033.2021.01.006
[34] 杨增强, 曹明, 刘磊. 采用氡气预测煤矿自然发火[J]. 煤矿安全. 2010, 41(7):45-47.
[34] Yang Z Q, Cao M, Liu L. Prediction of spontaneous ignition in coal mine using radon gas[J]. Safety in Coal Mine, 2010, 41(7):45-47.
[35] 周斌. 采空区煤自燃氡气析出机理及运移规律研究[D]. 太原: 太原理工大学, 2021.
[35] Zhou B. Study on radon exhalation mechanism and migration law during coal spontaneous combustion in goaf[D]. Taiyuan: Taiyuan University of Technology, 2021.
[36] 陈继福. 煤田地质学[M]. 北京: 化学工业出版社, 2016.
[36] Chen J F. Coal geology[M]. Beijing: Chemical Industry Press, 2016.
[37] 傅雪海, 秦勇, 韦重韬. 煤层气地质学[M]. 徐州: 中国矿业大学出版社, 2007.
[37] Fu XH, Qin Y, Wei CT. Coalbed methane geology[M]. Xuzhou: China University of Mining and Technology Press, 2007.
[38] 孙春岩, 贺会策, 宋腾, 等. ODP/IODP典型水合物站位稳定带界限和水合物分布的地球化学识别标志[J]. 地学前缘. 2017, 24(2):234-245.
doi: 10.13745/j.esf.2017.02.023
[38] Sun C Y, He H C, Song T, et al. Geochemical indicators of the gas hydrate stable zone and its distribution in the typical drilling sites of ODP / IODP. Earth Science Frontiers, 2017, 24 (2): 234-245.
[39] 孙春岩, 唐侥, 赵浩, 等. 广域电磁法在洞庭盆地北部生物气勘探中应用及远景靶区预测[J]. 地学前缘, 2018, 25(4):210-225.
doi: 10.13745/j.esf.sf.2018.6.26
[39] Sun C Y, Tang Y, Zhao H, et al. Application of wide-field electromagnetic method to biogas exploration and predictionof prospective target area in the northern Dongting Basin. Earth Science Frontiers, 25 (4):210-225.
[40] Perrier F, Richon P. Spatiotemporal variation of radon and carbon dioxide concentrations in an underground quarry: Coupled processes of natural ventilation,barometric pumping and internal mixing.[J]. Journal of Environmental Radioactivity, 2010, 101(4): 279-296.
[41] 孙立东. 自然放射性法探测煤矿隐伏水体的探讨[J]. 矿山测量. 1990, 2(3):55-56.
[41] Sun L D. Discussion on detection of hidden water body in coal mine by natural radioactivity method[J]. Mine Surveying. 1990, 2(3):55-56.
[42] 李兆令, 郭文建, 王石. 氡气测量和瞬变电磁综合探测技术在煤炭采空区调查中的应用研究[J]. 工程勘察, 2022, 50(5):73-78.
[42] Li Z L, Guo W J, Wang S. Application study of radon measurement method and time domain electromagnetic method in coal mined out area investigation[J]. Geotechnical Engineering Survey, 2022, 50(5):73-78.
[43] 魏建平, 蔡东林, 姚邦华, 等. 煤矿井下放射性活度水平及氡析出规律试验研究[J]. 河南理工大学学报:自然科学版, 2017, 36(1): 1-6.
[43] Wei J P, Cai D L, Yao B H, et al. Experimental study on radioactivity and radon concentration variation in coal mines[J]. Journal of Henan Polytechnic University:Natural Science, 2017, 36(1):1-6.
[44] 张东升, 张炜, 马立强, 等. 覆岩采动裂隙氡气探测研究进展及展望[J]. 中国矿业大学学报, 2016, 45(6):1082-1097.
[44] Zhang D S, Zhang W, Ma L Q, et al. Developments and prospects of detecting mining - induced fractures in overlying strata by radon[J]. Journal of China University of Mining & Technology, 2016, 45(6):1082-1097.
[45] 张炜. 覆岩采动裂隙及其含水性的氡气地表探测机理研究[D]. 北京: 中国矿业大学, 2012.
[45] Zhang W. Mechanism research on detecting mining-induced fractures and its aquosity in overlying strata by radon on surface[D]. Beijing: China University of Mining and Technology, 2012.
[1] 薛东旭, 刘诚, 郭发, 王俊, 徐多勋, 杨生飞, 张沛. 基于土壤氡气测量和可控源音频大地电磁的陕西眉县汤峪地热预测[J]. 物探与化探, 2023, 47(5): 1169-1178.
[2] 杨志斌, 周亚龙, 张富贵, 张舜尧, 孙忠军. 中国陆域冻土区浅表烃类地球化学特征及其成因分析[J]. 物探与化探, 2022, 46(3): 628-636.
[3] 刘伟, 黄韬, 王庭勇, 刘怡, 张继, 刘文涛, 张琦斌, 李强. 综合物探方法在城市隐伏断裂探测中的应用[J]. 物探与化探, 2021, 45(4): 1077-1087.
[4] 王永飞, 李宝新, 曹云, 刘晨阳. 地球物理信息和控矿构造研究在乌克兰米丘林铀矿床中的应用[J]. 物探与化探, 2020, 44(1): 99-106.
[5] 孙春岩, 赵浩, 贺会策, 李建华, 肖明国, 张仕强, 王栋琳, 唐侥. 洞庭盆地生物气地球化学勘探及资源远景评价[J]. 物探与化探, 2018, 42(1): 1-13.
[6] 杨志斌, 张富贵, 王慧艳. 极地冻土区浅表土壤烃类组成特征及指示意义[J]. 物探与化探, 2017, 41(6): 1190-1194.
[7] 孙春岩, 宋腾, 贺会策, 张志冰, 李攀峰, 赵浩, 李吉鹏. 智控型化探样品预处理系统及其在海洋天然气水合物勘查中的应用[J]. 物探与化探, 2015, 39(5): 954-961.
[8] 杨学明, 苏永军, 杜东, 范剑, 林星. 音频大地电磁法在海水入侵动态监测中的应用[J]. 物探与化探, 2013, 37(2): 301-305.
[9] 陈卫明, 徐仁廷, 李庆霞, 肖细炼, 薄玮, 张勤. 吸附态轻烃气相色谱分析方法及其在天然气水合物测定中的应用[J]. 物探与化探, 2012, 36(5): 775-782.
[10] 王振平, 尹清洋, 陈秀营. 含有不整合面的钻井剖面中酸解烃的垂向分布规律[J]. 物探与化探, 2012, 36(1): 19-22.
[11] 贺行良, 朱志刚, 张媛媛. 海底沉积物酸解烃分析方法[J]. 物探与化探, 2011, 35(6): 825-828.
[12] 卢丽, 李武, 李吉鹏, 吴传芝, 朱怀平. 油气化探酸解烃标准样品研制[J]. 物探与化探, 2010, 34(2): 180-184.
[13] 缪九军,荣发准,李广之,张彦霞. 酸解烃技术在油气勘探中的应用[J]. 物探与化探, 2005, 29(3): 209-212,216.
[14] 李兰杰. 影响酸解烃浓度的因素及排除干扰的方法[J]. 物探与化探, 2004, 28(2): 126-129.
[15] 李志明, 宋喜林, 张长江. 游离烃技术在沙漠覆盖区构造含油气评价中的应用[J]. 物探与化探, 2002, 26(5): 344-346.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com