Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (5): 1199-1207    DOI: 10.11720/wtyht.2024.1005
  “短偏移距瞬变电磁法技术与应用”专栏(特约专栏主编:薛国强) 本期目录 | 过刊浏览 | 高级检索 |
基于监督下降法的短偏移距瞬变电磁快速反演研究
饶丽婷1,2,3,4(), 武欣2,3,4(), 郭睿5, 党博1, 党瑞荣1
1.西安石油大学 电子工程学院,陕西 西安 710065
2.中国科学院矿产资源研究重点实验室 中国科学院地质与地球物理研究所,北京 100029
3.中国科学院大学 地球与行星科学学院,北京 100049
4.中国科学院 地球科学研究院,北京 100029
5.清华大学 电子工程系,北京 100084
Fast inversion of short-offset transient electromagnetic (SOTEM) data based on the supervised descent method
RAO Li-Ting1,2,3,4(), WU Xin2,3,4(), GUO Rui5, DANG Bo1, DANG Rui-Rong1
1. School of Electronic Engineering, Xi’an Shiyou University, Xi’an 710065, China
2. Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
3. College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
4. Innovation Academy of Earth Science, Chinese Academy of Sciences, Beijing 100029, China
5. Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(4168 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

短偏移距瞬变电磁法(简称SOTEM)通常采用传统式基于物理建模的反演方法,反演效率较低,不易灵活融入先验信息,而基于数据驱动的反演方法能够提高反演精度与效率,泛化能力却难以保证。为了提高SOTEM数据反演的精度和效率,并兼顾可靠的泛化能力,本文探索了一种融合物理建模与数据驱动的反演方法,将机器学习中监督下降法应用于SOTEM数据反演中。基于监督下降法的SOTEM数据反演分为线下训练和线上预测,线下训练时通过合理的训练集灵活融入先验信息,获得隐含模型特征的平均下降方向,线上预测时借助物理建模函数和训练所得下降方向,在传统反演框架下完成模型参数重建。文中利用层状大地模型构建训练集和测试集,实现了基于监督下降法的SOTEM数据一维反演,并与传统Occam算法进行了对比。 结果表明:基于监督下降法的SOTEM反演效率大幅提升,反演精度较高,具有良好的泛化能力。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
饶丽婷
武欣
郭睿
党博
党瑞荣
关键词 瞬变电磁法SOTEM快速反演监督下降法机器学习    
Abstract

The short-offset transient electromagnetic (SOTEM) data are typically processed using conventional inversion methods based on physical modeling, manifesting relatively low efficiency and difficulty in integrating priori information. In contrast, the data-driven inversion methods can enhance the inversion accuracy and efficiency but fail to ensure the generalization capability. To achieve high inversion accuracy and efficiency for SOTEM data and a reliable generalization capability, this study proposed an inversion method that integrates physical modeling with the data-driven approach, introducing the supervised descent method in machine learning into SOTEM data inversion. The proposed inversion method involves the offline training and online prediction stages. In the offline training stage, the prior information is flexibly integrated into the model training through a reasonable training dataset to obtain the average descent directions with implicit model features. In the online prediction stage, the physical modeling functions and the descent directions are employed to reconstruct the model parameters under the conventional inversion framework. In this study, the layered geodetic model was applied to design the training and test datasets for the 1D inversion of SOTEM data based on the supervised descent method. The inversion results were compared with those obtained using Occam's inversion algorithm, demonstrating that the proposed inversion method shows significantly enhanced inversion efficiency, higher inversion accuracy, and higher generalization capability.

Key wordstransient electromagnetic (TEM) method    short-offset transient electromagnetic (SOTEM) method    fast inversion    supervised descent method    machine learning
收稿日期: 2023-01-03      修回日期: 2023-08-04      出版日期: 2024-10-20
ZTFLH:  P631.1  
基金资助:国家自然科学基金项目(42004064);国家自然科学基金项目(42074121);河南省豫地科技集团2024年重点科研项目(JTZDKY202405);中央引导地方科技发展资金项目(2023ZY0036);广西壮族自治区重点研发计划项目(2023AB260490)
通讯作者: 武欣(1982-),男,副研究员,博士,主要从事面向地形复杂地区的矿产、地下水等资源及地下人工目标的地球物理探测理论方法研究与装备研发工作。Email:wu_xin18@163.com
作者简介: 饶丽婷(1989-),女,副教授,博士,主要从事电磁法正反演理论与数据处理方法研究工作。Email:ltrao@xsyu.edu.cn
引用本文:   
饶丽婷, 武欣, 郭睿, 党博, 党瑞荣. 基于监督下降法的短偏移距瞬变电磁快速反演研究[J]. 物探与化探, 2024, 48(5): 1199-1207.
RAO Li-Ting, WU Xin, GUO Rui, DANG Bo, DANG Rui-Rong. Fast inversion of short-offset transient electromagnetic (SOTEM) data based on the supervised descent method. Geophysical and Geochemical Exploration, 2024, 48(5): 1199-1207.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1005      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I5/1199
Fig.1  层状大地模型上SOTEM观测示意
线下训练 线上预测
1)生成L个先验模型 m p r i o r i及其仿真数据 d i p r i o r(i=1,2,…,L),重新排列
形成先验模型矩阵 M p r i o r和先验数据矩阵 D p r i o r;
2)设定 M 0为初始模型;
3) for j=1,2,…,J
4) Δ M j = M p r i o r - M j;
5) Δ D j = F ( M J ) - D p r i o r;
6) Δ D j = U Σ V T;
7) K ~ j = V ( Σ 2 + α j I ) - 1 Σ T U T Δ M j;
8) M j = M j + Δ D j · K ~ j;
9) end
1)设定m0为固定初始模型;
2) Δ d = F ( m 0 ) - d o b s;
3) for j=1,2,…,J
4) m j = m j + K ~ j ( d o b s - F ( m j ) );
5) 计算当前数据拟合差rms;
6) if rms<rms0
7) 迭代终止;
8) Δ d = F ( m j ) - d o b s;
9) end
Table 1  算法的实施程序步骤
Fig.2  不同训练集的下降方向示意
参数 三层模型 四层模型 五层模型
ρ1/(Ω·m) 100~300 80~120 100~400
ρ2/(Ω·m) 20~100 300~500 20~80
ρ3/(Ω·m) 200~500 50~150 200~400
ρ4/(Ω·m) 300~500 20~80
ρ5/(Ω·m) 300~500
h 1 / m 80~200 80~150 50~100
h 2 / m 100~300 80~150 50~100
h 3 / m 9999 150~300 100~200
h 4 / m 9999 150~300
h 5 / m 9999
个数 1024 1024 1024
Table 2  不同地电模型的训练集参数
参数 训练集 测试集
ρ1/(Ω·m) 300~600 300~500
ρ2/(Ω·m) 30~200 50~150
ρ3/(Ω·m) 300~600 400~600
h 1 / m 100~300 100~250
h 2 / m 100~300 100~250
个数 1024 50
Table 3  三层模型的训练集和测试集参数设置
参数 训练集 测试集
ρ1/(Ω·m) 300~600 300~500
ρ2/(Ω·m) 50~150 60~140
ρ3/(Ω·m) 200~300 200~300
ρ4/(Ω·m) 20~100 30~90
ρ5/(Ω·m) 300~600 300~500
h 1 / m 50~150 80~150
h 2 / m 50~100 50~100
h 3 / m 100~200 120~180
h 4 / m 100~200 100~200
个数 1024 50
Table 4  五层模型的训练集和测试集参数设置
Fig.3  部分测试样本的仿真数据
Fig.4  线下训练的残差收敛曲线
Fig.5  线上预测的预测步数与数据残差
Fig.6  三层模型3个样本的模型及其含噪正演响应与反演响应
Fig.7  五层模型3个样本的模型及其含噪正演响应与反演响应
[1] 底青云, 朱日祥, 薛国强, 等. 我国深地资源电磁探测新技术研究进展[J]. 地球物理学报, 2019, 62(6):2128-2138.
doi: 10.6038/cjg2019M0633
[1] Di Q Y, Zhu R X, Xue G Q, et al. New development of the Electromagnetic (EM) methods for deep exploration[J]. Chinese Journal of Geophysics, 2019, 62(6):2128-2138.
[2] 何继善, 薛国强. 短偏移距电磁探测技术概述[J]. 地球物理学报, 2018, 61(1):1-8.
doi: 10.6038/cjg2018L0003
[2] He J S, Xue G Q. Review of the key techniques on short-offset electromagnetic detection[J]. Chinese Journal of Geophysics, 2018, 61(1):1-8.
[3] 卢云飞, 薛国强, 邱卫忠, 等. SOTEM研究及其在煤田采空区中的应用[J]. 物探与化探, 2017, 41(2):354-359.
[3] Lu Y F, Xue G Q, Qiu W Z, et al. The research on SOTEM and its application in mined-out area of coal mine[J]. Geophysical and Geochemical Exploration, 2017, 41(2):354-359.
[4] Xue G Q, Chen W Y, Yan S. Research study on the short offset time-domain electromagnetic method for deep exploration[J]. Journal of Applied Geophysics, 2018,155:131-137.
[5] Guo Z W, Xue G Q, Liu J X, et al. Electromagnetic methods for mineral exploration in China:A review[J]. Ore Geology Reviews, 2020,118:103357.
[6] 陈大磊, 陈卫营, 郭朋, 等. SOTEM法在城镇强干扰环境下的应用——以坊子煤矿采空区为例[J]. 物探与化探, 2020, 44(5):1226-1232.
[6] Chen D L, Chen W Y, Guo P, et al. The application of SOTEM method to populated areas:A case study of Fangzi coal mine goaf[J]. Geophysical and Geochemical Exploration, 2020, 44(5):1226-1232.
[7] 林君, 薛国强, 李貅. 半航空电磁探测方法技术创新思考[J]. 地球物理学报, 2021, 64(9):2995-3004.
doi: 10.6038/cjg2021P0409
[7] Lin J, Xue G Q, Li X. Technological innovation of semi-airborne electromagnetic detection method[J]. Chinese Journal of Geophysics, 2021, 64(9):2995-3004.
[8] 张莹莹. 电性源瞬变电磁法综述[J]. 物探与化探, 2021, 45(4):809-823.
[8] Zhang Y Y. Review on the study of grounded-source transient electromagnetic method[J]. Geophysical and Geochemical Exploration, 2021, 45(4):809-823.
[9] 陈卫营, 薛国强, 崔江伟, 等. SOTEM响应特性分析与最佳观测区域研究[J]. 地球物理学报, 2016, 59(2):739-748.
doi: 10.6038/cjg20160231
[9] Chen W Y, Xue G Q, Cui J W, et al. Study on the response and optimal observation area for SOTEM[J]. Chinese Journal of Geophysics, 2016, 59(2):739-748.
[10] 薛俊杰, 陈卫营, 王贺元. 电性源短偏移瞬变电磁探测深度分析与应用[J]. 物探与化探, 2017, 41(2):381-384.
[10] Xue J J, Chen W Y, Wang H Y. Analysis and application of the detection depth of electrical source Short-offset TEM[J]. Geophysical and Geochemical Exploration, 2017, 41(2):381-384.
[11] 常江浩, 薛国强. 电性源短偏移距瞬变电磁场扩散规律三维数值模拟[J]. 地球科学与环境学报, 2020, 42(6):711-721.
[11] Chang J H, Xue G Q. Three-dimensional numerical simulation of diffusion law of short-offset grounded-wire transient electromagnetic field[J]. Journal of Earth Sciences and Environment, 2020, 42(6):711-721.
[12] 陈卫营, 李海, 薛国强, 等. SOTEM数据一维OCCAM反演及其应用于三维模型的效果[J]. 地球物理学报, 2017, 60(9):3667-3676.
doi: 10.6038/cjg20170930
[12] Chen W Y, Li H, Xue G Q, et al. 1D OCCAM inversion of SOTEM data and its application to 3D models[J]. Chinese Journal of Geophysics, 2017, 60(9):3667-3676.
[13] 宋婉婷, 陈卫营. SOTEM数据拟二维反演研究与应用[J]. 地球科学与环境学报, 2022, 44(1):132-142.
[13] Song W T, Chen W Y. Study on quasi-2D inversion for SOTEM data and its application[J]. Journal of Earth Sciences and Environment, 2022, 44(1):132-142.
[14] Guo R, Wu X, Liu L H, et al. Adaptive sharp boundary inversion for transient electromagnetic data[J]. Progress in Electromagnetics Research M, 2017,57:129-138.
[15] Zhdanov M S. Marine electromagnetic methods[G]//Foundations of geophysical electromagnetic theory and methods. Amsterdam:Elsevier,2018:625-662.
[16] 苏扬, 殷长春, 刘云鹤, 等. 基于广义模型约束的时间域航空电磁反演研究[J]. 地球物理学报, 2019, 62(2):743-751.
doi: 10.6038/cjg2019M0217
[16] Su Y, Yin C C, Liu Y H, et al. Inversions of time-domain airborne EM based on generalized model constraints[J]. Chinese Journal of Geophysics, 2019, 62(2):743-751.
[17] 孙怀凤, 张诺亚, 柳尚斌, 等. 基于L1范数的瞬变电磁非线性反演[J]. 地球物理学报, 2019, 62(12):4860-4873.
doi: 10.6038/cjg2019M0690
[17] Sun H F, Zhang N Y, Liu S B, et al. L1-norm based nonlinear inversion of transient electromagnetic data[J]. Chinese Journal of Geophysics, 2019, 62(12):4860-4873.
[18] Rao L T, Wu X, Guo R, et al. A comparative study of different stabilizers for retrieving geoelectric structure based on a unified framework[J]. Journal of Applied Geophysics, 2020,175:104001.
[19] Araya P M, Jennings J, Adler A, et al. Deep learning tomography[J]. The Leading Edge, 2018, 37(1):5866.
[20] Tan C, Luy S H, Dong F, et al. Image reconstruction based on convolutional neural network for electrical resistance tomography[J]. IEEE Sensors Journal, 2019, 19(1):196-204.
[21] Mandija S, Meliadò E F, Huttinga N R F, et al. Opening a new window on MR-based Electrical Properties Tomography with deep learning[J]. Scientific Reports, 2019,9:8895.
[22] Li X Y, Zhou Y, Wang J M, et al. A novel deep neural network method for electrical impedance tomography[J]. Transactions of the Institute of Measurement and Control, 2019, 41(14):4035-4049.
doi: 10.1177/0142331219845037
[23] Wu Y, Lin Y Z. InversionNet:An efficient and accurate data-driven full waveform inversion[J]. IEEE Transactions on Computational Imaging, 2020,6:419-433.
[24] Ongie G, Jalal A, Metzler C A, et al. Deep learning techniques for inverse problems in imaging[J]. IEEE Journal on Selected Areas in Information Theory, 2020, 1(1):39-56.
[25] Raissi M, Perdikaris P, Karniadakis G E. Physics-informed neural networks:A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019,378:686-707.
[26] Jin Y C, Shen Q Y, Wu X Q, et al. A physics-driven deep-learning network for solving nonlinear inverse problems[J]. Petrophysics:The SPWLA Journal of Formation Evaluation and Reservoir Description, 2020, 61(1):86-98.
[27] Guo R, Li M K, Yang F, et al. Application of supervised descent method for 2D magnetotelluric data inversion[J]. Geophysics, 2020, 85(4):WA53-WA65.
[28] Colombo D, Turkoglu E, Li W C, et al. Physics-driven deep-learning inversion with application to transient electromagnetics[J]. Geophysics, 2021, 86(3):E209-E224.
[29] Bang M, Oh S, Noh K, et al. Imaging subsurface orebodies with airborne electromagnetic data using a recurrent neural network[J]. Geophysics, 2021, 86(6):E407-E419.
[30] Lu S, Liang B Y, Wang J W, et al. 1-D inversion of GREATEM data by supervised descent learning[J]. IEEE Geoscience and Remote Sensing Letters, 2022,19:3053247.
[31] Asif M R, Foged N, Maurya P K, et al. Integrating neural networks in least-squares inversion of airborne time-domain electromagnetic data[J]. Geophysics, 2022, 87(4):E177-E187.
[32] Xiong X H, De la Torre F. Supervised descent method and its applications to face alignment[C]// 2013 IEEE Conference on Computer Vision and Pattern Recognition,2013:532-539.
[33] Nabighian M N. 勘查地球物理电磁法:第1卷理论[M]. 赵经祥等,译. 北京: 地质出版社,1992.
[33] Nabighian M N. Electromagnetic Methods in Applied Geophysics Volume 1,Theory[M].Translated by Zhao J X,et al. Beijing: Geology Press,1992.
[34] Guptasarma D, Singh B. New digital linear filters for Hankel J0 and J1 transforms[J]. Geophysical Prospecting, 1997, 45(5):745-762.
[35] Knight J H. Transient electromagnetic calculations using the gaver-stehfest inverse laplace transform method[J]. Geophysics, 1982, 47(1):47.
[1] 薛国强. 短偏移距瞬变电磁法探测技术与应用研究新进展[J]. 物探与化探, 2024, 48(5): 1165-1168.
[2] 陈卫营, 薛国强, 李海. SOTEM野外数据采集中的关键参数分析[J]. 物探与化探, 2024, 48(5): 1169-1175.
[3] 常江浩, 薛俊杰, 孟庆鑫, 赵鹏. 煤矿富水体SOTEM响应三维数值模拟研究[J]. 物探与化探, 2024, 48(5): 1176-1184.
[4] 黄仕茂, 杨光, 王军成, 罗传根, 徐明钻, 周楠楠, 赵鹏. SOTEM在厚覆盖煤矿采空区探测中的应用实例[J]. 物探与化探, 2024, 48(5): 1208-1214.
[5] 李贺, 李貅, 戚志鹏, 曹华科. 孔—巷瞬变电磁隧道不良地质体超前预报方法研究[J]. 物探与化探, 2024, 48(5): 1215-1222.
[6] 朱小伟, 丁辰, 薛凯喜, 陈骏, 韩凯敏, 罗强, 易光胜. 等值反磁通瞬变电磁法在地下浅层富水区应用——以新余市下村镇为例[J]. 物探与化探, 2024, 48(5): 1424-1436.
[7] 尚亚洲, 张兆辉, 许多年, 赵雯雯, 陈华勇, 韩海波. 基于随机森林的火山岩岩性测井识别——以准噶尔盆地滴西地区石炭系为例[J]. 物探与化探, 2024, 48(4): 1025-1036.
[8] 江丽, 张智谟, 王琦玮, 封志兵, 张博程, 任腾飞. 基于不同机器学习模型的石油测井数据岩性分类对比研究[J]. 物探与化探, 2024, 48(2): 489-497.
[9] 付兴, 谭捍东, 董岩, 汪茂. 基于监督下降法的大地电磁二维反演及应用研究[J]. 物探与化探, 2024, 48(1): 175-184.
[10] 郑孝诚, 张明华, 任伟. 卷积神经网络在山东金矿勘查预测中的应用[J]. 物探与化探, 2023, 47(6): 1433-1440.
[11] 周钟航, 张莹莹. 山峰对电性源地面瞬变电磁响应的影响及校正方法[J]. 物探与化探, 2023, 47(5): 1236-1249.
[12] 邢涛, 王垚, 李建慧. 基于B样条插值的瞬变电磁响应一维精确计算[J]. 物探与化探, 2023, 47(5): 1316-1325.
[13] 何胜, 王万平, 董高峰, 南秀加, 魏丰丰, 白勇勇. 等值反磁通瞬变电磁法在城市地质调查中的应用[J]. 物探与化探, 2023, 47(5): 1379-1386.
[14] 吴国培, 张莹莹, 赵华亮, 周钟航, 李医滨. 基于横向约束的中心回线瞬变电磁一维反演[J]. 物探与化探, 2023, 47(4): 1024-1032.
[15] 宫明旭, 白利舸, 曾昭发, 吴丰收. 基于机器学习松辽盆地大地热流计算与特征分析[J]. 物探与化探, 2023, 47(3): 766-774.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com