Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (3): 835-844    DOI: 10.11720/wtyht.2023.1206
  生态地质调查 本期目录 | 过刊浏览 | 高级检索 |
农田土壤—植物系统中钒的迁移富集规律
赵玉岩(), 姜涛, 杨秉翰, 张泽宇, 李政赫, 李兵, 汤肖丹()
吉林大学 地球探测科学与技术学院,吉林 长春 130026
Migration and enrichment patterns of vanadium in the soil and plant system of farmland
ZHAO Yu-Yan(), JIANG Tao, YANG Bing-Han, ZHANG Ze-Yu, LI Zheng-He, LI Bing, TANG Xiao-Dan()
College of Geoexploration Science and Technology, Jilin University, Changchun 130026, China
全文: PDF(1991 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

钒(V)是维持生物体正常生命活动的必需微量元素之一,也是联合国环境规划署列入环境优先污染物的有害元素之一。研究V在土壤—植物系统中的迁移富集规律,对于深入了解其生态地球化学行为、保障农产品安全与人体健康具有重要现实意义。本文以山东临沂某地普通农田为例,对土壤、植物进行系统的采样,分析测试土壤与植物中的V与伴生元素的含量。采用描述性统计、相关性分析、聚类分析等统计方法与单因子污染指数法、潜在生态风险指数法、生物富集系数法等分析方法对研究区内V进行来源分析、污染评价以及V在土壤—植物系统的迁移转换规律的研究。结果表明:V在研究区内分布较为集中,其含量随着Fe、Ti含量的升高而升高,随SiO2、Na2O、Sr、CaO含量升高而下降。研究区内V主要来源于母岩风化,高含量部分与磁铁矿相关。根据单因子指数法与潜在生态风险指数法评价结果,V在研究区土壤内较为清洁,但区内伴生的Cd污染需引起注意。V在植物中主要富集在根部,植物对V的吸收能力总体上与土壤中Cu、Pb、Zn、Ni、Co、Cd、Cr的含量呈负相关,以Cr最为显著;与土壤中As的含量呈正相关。该研究丰富了V的生态地球化学理论,也为区域农业生产、环境质量评估和生态污染防治提供了科学依据。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵玉岩
姜涛
杨秉翰
张泽宇
李政赫
李兵
汤肖丹
关键词 土壤—植物系统分布特征污染评价迁移富集    
Abstract

Vanadium (V) is an essential trace element required by organisms for maintaining their normal life activities. It is also a harmful element listed as a priority environmental pollutant by the United Nations Environment Programme (UNEP). The study of the migration and enrichment patterns of V in the soil and plant system is of great practical significance for further understanding the ecological geochemical behavior of V and ensuring the safety of agricultural products and human health. This study systematically sampled the soil and plants in some ordinary farmland in Linyi City, Shandong Province and analyzed and tested the contents of V and its associated elements in the soil and plant samples. Moreover, this study conducted the source analysis and pollution assessment of V and investigated the migration and transformation patterns of V in the soil-plant system using statistical methods such as descriptive statistics, correlation analysis, and cluster analysis, as well as the single factor pollution index method, the potential ecological risk index method, and the biological enrichment coefficient method. The results are as follows: V is relatively concentrated in the study area, and its content increases with an increase in the Fe and Ti contents and decreases with an increase in the SiO2, Na2O, Sr, and CaO contents; The V in the study area mainly originates from the weathering of parent rocks, and the parts with a high V content is related to magnetite; As shown by the results of the single factor index method and the potential ecological risk index method, V is relatively clean in the soils of the study area, but attention should be paid to the pollution of the associated Cd; V is enriched primarily in the roots of plants, and plants' absorption capacity of V is generally negatively correlated with the contents of Cu, Pb, Zn, Ni, Co, Cd, and especially Cr in soils and is positively correlated with the As content in soils. This study enriches the ecological geochemical theory of V and provides a scientific basis for regional agricultural production, environmental quality assessment, and ecological pollution control.

Key wordsvanadium    soil-plant system    distribution characteristics    pollution assessment    migration and enrichment
收稿日期: 2022-04-21      修回日期: 2022-08-20      出版日期: 2023-06-20
ZTFLH:  X142  
  X825  
基金资助:山东省第七地质矿产勘查院科技创新项目(QDKY202001);吉林省生态环境厅环保科研项目(吉环科字第2019-12号);中央高校基本科研业务费项目(451180304165)
通讯作者: 汤肖丹(1985-),女,博士,副教授,研究方向为环境和计算地球化学。Email:tangxiaodan@jlu.edu.cn
作者简介: 赵玉岩(1981-),男,博士,教授,研究方向为应用地球化学。Email: zhaoyuyan@jlu.edu.cn
引用本文:   
赵玉岩, 姜涛, 杨秉翰, 张泽宇, 李政赫, 李兵, 汤肖丹. 农田土壤—植物系统中钒的迁移富集规律[J]. 物探与化探, 2023, 47(3): 835-844.
ZHAO Yu-Yan, JIANG Tao, YANG Bing-Han, ZHANG Ze-Yu, LI Zheng-He, LI Bing, TANG Xiao-Dan. Migration and enrichment patterns of vanadium in the soil and plant system of farmland. Geophysical and Geochemical Exploration, 2023, 47(3): 835-844.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.1206      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I3/835
ICP-MS XRF
分析参数 设定值 分析参数 设定值
功率/W 1150 初始化元素 Ag
采样锥孔径/mm 1.2 初始化通道 2210
截取锥孔径/mm 1.0 管流/μA 250
冷却气流量/(L·min-1) 18 管压/kV 40
辅助器流量/(L·min-1) 1.2 计数率 1
雾化器流量/(L·min-1) 0.86 真空时间/s 25
扫描次数 20 测量时间/s 100
测量时间/s 60 测量次数 3
Table 1  仪器工作参数
Fig.1  表层土壤V含量箱式图
作物种类 最小值/
10-6
最大值/
10-6
均值/
10-6
标准差 变异系数
樱桃 35.66 136.86 77.49 24.67 0.32
西瓜 46.63 184.28 108.87 33.79 0.31
花生 31.88 113.87 76.51 57.97 0.76
板栗 35.13 74.75 55.83 28.01 0.50
地瓜 33.90 148.10 74.82 80.75 1.08
核桃 37.39 122.33 71.51 60.06 0.84
玉米 52.04 121.71 83.00 49.26 0.59
Table 2  作物根系土V含量特征值统计
元素 V Cu Pb Zn Ni Co Cd Cr As
V 1 0.318** 0.081 0.199** 0.697** 0.891** -0.055 0.926** 0.351**
Cu 1 0.351** 0.858** 0.675** 0.434** -0.06 0.266** 0.06
Pb 1 0.507** 0.041 0.08 -0.021 0.101 0.462**
Zn 1 0.333** 0.285** -0.154* 0.219** 0.129
Ni 1 0.816** 0.051 0.634** 0.178**
Co 1 -0.014 0.930** 0.352**
Cd 1 -0.068 0.160*
Cr 1 0.393**
As 1
Table 3  土壤中V与重金属含量的相关性分析
Fig.2  土壤中V与重金属含量的相关性
元素 Al2O3 CaO Fe K MgO Na2O SiO2 Sr
相关系数 0.279 -0.176** 0.637** 0.275 0.125 -0.464** -0.143* -0.367**
元素 Ti B F
相关系数 0.653** 0.187 0.347
Table 4  V与造岩元素的相关性分析
Fig.3  V与造岩元素的聚类分析谱系
Fig.4  土壤重金属元素生态风险指数
作物 西瓜 花生 玉米 地瓜
富集系数 0.01 0.19 0.15 0.07
作物 樱桃 板栗 核桃
富集系数 0.01 0.07 0.17
Table 5  作物中V的富集系数
作物种类 器官 最小值/
10-6
最大值/
10-6
中位数/
10-6
均值/
10-6
西瓜 5.68 89.44 25.54 36.44
3.63 74.53 13.83 21.92
4.87 72.32 27.39 28.84
0.06 4.86 0.86 1.03
0.10 1.50 0.83 0.84
果实 0.03 2.52 0.40 0.64
花生 24.74 92.68 58.31 55.88
3.20 43.80 11.43 14.89
13.60 38.75 18.09 20.56
果实 9.75 16.71 10.13 12.31
玉米 12.12 25.264 22.46 20.31
1194 20.74 18.71 18.31
4.73 15.51 9.51 9.47
果实 7.06 20.98 9.29 11.40
地瓜 2.64 22.26 8.24 10.54
0.30 10.73 4.19 4.54
果实 2.48 8.88 3.74 4.44
樱桃 1.06 5.86 3.00 3.11
果实 0.13 1.37 0.51 0.57
板栗 4.30 16.62 9.67 8.54
果实 2.32 16.33 3.41 5.55
核桃 3.07 17.93 9.29 10.25
果实 7.47 17.50 9.31 10.64
Table 6  作物不同器官V含量特征值统计
部位 Cu Pb Zn Ni Co Cd Cr As
-0.239 -0.247 -0.122 -0.191 -0.071 -0.398* -0.075 -0.184
-0.024 0.077 -0.133 -0.204 -0.262 -0.359 -0.365* 0.353
-0.214 -0.132 -0.355 -0.038 -0.234 -0.115 -0.417* 0.14
-0.08 -0.021 -0.151 -0.182 -0.208 -0.173 -0.257 0.013
-0.244 -0.145 -0.308 -0.512** -0.590** -0.188 -0.606** 0.132
果实 -0.279 -0.224 -0.319 -0.347 -0.399* -0.119 -0.409* 0.174
Table 7  西瓜各器官V吸收能力与土壤重金属含量的相关性统计
[1] 曾英, 倪师军, 张成江. 钒的生物效应及其环境地球化学行为[J]. 地球科学进展, 2004, 19(S1):472-476.
[1] Zeng Y, Ni S J, Zhang C J. Biological effect and environment geochemical behavior of vanadium[J]. Advance in Earth Science, 2004, 19(S1):472-476.
[2] 杨金燕, 唐亚, 李廷强, 等. 我国钒资源现状及土壤中钒的生物效应[J]. 土壤通报, 2010, 41(6):1511-1517.
[2] Yang J Y, Tang Y, Li T Q, et al. Soil biogeochemistry and resources situation of vanadium in China[J]. Chinese Journal of Soil Science, 2010, 41(6):1511-1517.
[3] Larsson M A, Baken S, Gustafsson J P, et al. Vanadium bioavailability and toxicity to soil microorganisms and plants[J]. Environmental Toxicology and Chemistry, 2013, 32(10):2266-2273.
pmid: 23832669
[4] 袁莉, 杨鹰, 高铭宇, 等. 微量元素钒的生物学效应[J]. 中国兽医科技, 1999, 29(1):21-23.
[4] Yuan L, Yang Y, Gao M Y, et al. Biological effects of trace element vanadium[J]. Chinese Journal of Veterinary Science and Technology, 1999, 29(1):21-23.
[5] 吴涛, 兰昌云. 环境中的钒及其对人体健康的影响[J]. 广东微量元素科学, 2004, 11(1):11-15.
[5] Wu T, Lan C Y. Vanadium in environment and its harm to human health[J]. Trace Elements Science, 2004, 11(1):11-15.
[6] 王平利, 张成江. 土壤中钒的环境地球化学研究现状[J]. 物探化探计算技术, 2004, 26(3):247-251.
[6] Wang P L, Zhang C J. Environment geochemistry research progress of vanadium in soil[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2004, 26(3):247-251.
[7] 张庆强. 土壤中钒的潜在生态风险研究[D]. 北京: 北京师范大学, 2009.
[7] Zhang Q Q. Potential ecological risk of vanadium in the soil[D]. Beijing: Beijing Normal University, 2009.
[8] 滕彦国, 张庆强, 肖杰, 等. 攀枝花公园土壤中钒的地球化学形态及潜在生态风险[J]. 矿物岩石, 2008, 28(2):102-106.
[8] Teng Y G, Zhang Q Q, Xiao J, et al. Geochemical speciation and potential ecological risk of vanadium in the soil in the panzhihua park[J]. Journal of Mineralogy and Petrology, 2008, 28(2):102-106.
[9] 矫旭东, 滕彦国. 土壤中钒污染的修复与治理技术研究[J]. 土壤通报, 2008, 39(2):448-452.
[9] Jiao X D, Teng Y G. Techniques on soil remediation and disposal of vanadium pollution[J]. Chinese Journal of Soil Science, 2008, 39(2):448-452.
[10] 龙治杰. 攀枝花地区土壤重金属分布特征及钒元素来源解析[D]. 成都: 成都理工大学, 2018.
[10] Long Z J. A study on the spatial distribution of heavy metal elements and source apportionment of vanadium in Panzhihua area soil[D]. Chengdu: Chengdu University of Technology, 2018.
[11] Aihemaiti A, Gao Y, Meng Y, et al. Review of plant-vanadium physiological interactions,bioaccumulation,and bioremediation of vanadium-contaminated sites[J]. Science of the Total Environment, 2020, 712:135637.
doi: 10.1016/j.scitotenv.2019.135637
[12] Aikelaimu A, Jiang J G, Li D A, et al. Toxic metal tolerance in native plant species grown in a vanadium mining area[J]. Environmental Science and Pollution Research International, 2017, 24:26839-26850.
doi: 10.1007/s11356-017-0250-5 pmid: 28963601
[13] 汪金舫, 刘铮. 土壤中钒的化学结合形态与转化条件的研究[J]. 中国环境科学, 1995, 15(1):34-39.
[13] Wang J F, Liu Z. Studies on chemical forms of vanadium in soil and their transformation[J]. China Environment Science, 1995, 15(1):34-39.
[14] Shaheen S M, Alessi D S, Tack F, et al. Redox chemistry of vanadium in soils and sediments:Interactions with colloidal materials,mobilization,speciation,and relevant environmental implications:A review[J]. Advances in Colloid and Interface Science, 2019, 265:1-13.
doi: S0001-8686(18)30315-4 pmid: 30685738
[15] Larsson M A, Baken S, Gustafsson J P, et al. Vanadium bioavailability and toxicity to soil microorganisms and plants[J]. Environmental Toxicology & Chemistry, 2013, 32(10):2266-2273.
[16] 滕彦国, 徐争启, 王金生. 钒的环境生物地球化学[M]. 北京: 科学出版社, 2011.
[16] Teng Y G, Xu Z Q, Wang J S. Environmental biogeochemistry of vanadium[M]. Beijing: Science Press, 2011.
[17] 孔凡彬, 刘阳. 单因子指数法和内梅罗指数法在土壤环境质量评价中的比较[J]. 甘肃科技, 2014, 30(3):21-22.
[17] Kong F B, Liu Y. Comparison of single factor index method and Nemerow index method in soil environmental quality assessment[J]. Gansu Science and Technology, 2014, 30(3):21-22.
[18] 周亚龙, 郭志娟, 王成文, 等. 云南省镇雄县土壤重金属污染及潜在生态风险评估[J]. 物探与化探, 2019, 43(6):1358-1366.
[18] Zhou Y L, Guo Z J, Wang C W, et al. Assessment of heavy metal pollution and potential ecological risks of soils in Zhenxiong County,Yunnan Province[J]. Geophysical and Geochemical Exploration, 2019, 43(6):1358-1366.
[19] 徐争启, 倪师军, 庹先国, 等. 潜在生态危害指数法评价中重金属毒性系数计算[J]. 环境科学与技术, 2008, 31(2):112-115.
[19] Xu Z Q, Ni S J, Tuo X G, et al. Calculation of heavy metals' toxicity coefficient in the evaluation of potential ecological risk index[J]. Environment Science and Technology, 2008, 31(2):112-115.
[20] 夏伟, 吴冬妹, 袁知洋. 土壤—农作物系统中重金属元素迁移转化规律研究——以湖北宣恩县为例[J]. 资源环境与工程, 2018, 32(4):563-568.
doi: 10.16536/j.cnki.issn.1671-1211.2018.04.009
[20] Xia W, Wu D M, Yuan Z Y. Study on the migration and transformation law of heavy metals in soil-crop system[J]. Resources Environment and Engineering, 2018, 32(4):563-568.
doi: 10.16536/j.cnki.issn.1671-1211.2018.04.009
[21] 庞绪贵, 代杰瑞, 陈磊, 等. 山东省17市土壤地球化学背景值[J]. 山东国土资源, 2019, 35(1):46-56.
[21] Pang X G, Dai J R, Chen L, et al. Soil geochemical background value of 17 cities in Shandong Province[J]. Shandong Land and Resources, 2019, 35(1):46-56.
[22] 庞绪贵, 代杰瑞, 喻超, 等. 山东省17市土壤地球化学基准值[J]. 山东国土资源, 2019, 35(1):36-45.
[22] Pang X G, Dai J R, Yu C, et al. Soil geochemical reference value of 17 cities in Shandong Province[J]. Shandong Land and Resources, 2019, 35(1):36-45.
[23] 林师整. 宁芜地区钒的地球化学特征[J]. 地球化学, 1980, 9(2):122-133.
[23] Lin S Z. Geochemical characteristics of vanadium as exemplified from a certain district in China[J]. Geochimica, 1980, 9(2):122-133.
[24] 汪金舫, 刘铮. 钒在土壤中的含量分布和影响因素[J]. 土壤学报, 1994, 31(1):61-67.
[24] Wang J F, Liu Z. Vanadium distribution and its affecting factors in soils of China[J]. Acta Pedologica Sinica, 1994, 31(1):61-67.
[25] Chen L, Liu J R, Hu W F, et al. Vanadium in soil-plant system:Source,fate,toxicity,and bioremediation[J]. Journal of Hazardous Materials, 2021, 405:124200.
doi: 10.1016/j.jhazmat.2020.124200
[26] 刘英俊, 曹励明. 元素地球化学导论[M]. 北京: 地质出版社,1987.
[26] Liu Y J, Cao L M. Introduction to elemental geochemistry[M]. Beijing: Geogical Publishing House,1987.
[27] 郝立波, 戚长谋. 地球化学原理[M]. 北京: 地质出版社, 2004.
[27] Hao L B, Qi C M. Principles of geochemistry[M]. Beijing: Geogical Publishing House, 2004.
[28] 卢良兆, 许文良. 岩石学[M]. 北京: 地质出版社, 2017.
[28] Lu L Z, Xu W L. Petrology[M]. Beijing: Geogical Publishing House, 2017.
[29] Canadian Council of Ministers of the Environment. A protocol for the derivation of environmental and human healthsoil quality guidelines[R]. Winnipeg:CCME, 2006.
[30] 周亚龙, 杨志斌, 王乔林, 等. 雄安新区农田土壤-农作物系统重金属潜在生态风险评估及其源解析[J]. 环境科学, 2021, 42(4):2003-2015.
[30] Zhou Y L, Yang Z B, Wang Q L, et al. Potential ecological risk assessment and source analysis of heavy metals in soil-crop system in Xiong'an New District[J]. Environmental Science, 2021, 42(4):2003-2015.
[31] Ekaterina G, Alina B, Natalia R, et al. Monitoring of the migratory ability of heavy metals in the soil-plant system[J]. Biointerface Research in Applied Chemistry, 2020, 11(3):10351-10357.
doi: 10.33263/BRIAC
[32] 孙厚云, 卫晓锋, 孙晓明, 等. 钒钛磁铁矿尾矿库复垦土地及周边土壤—玉米重金属迁移富集特征[J]. 环境科学, 2021, 42(3):1166-1176.
[32] Sun H Y, Wei X F, Sun X M, et al. Bioaccumulation and translocation characteristics of heavy metals in a soil-maize system in reclaimed land and surrounding areas of typical vanadium-titanium magnetite tailings[J]. Environmental Science, 2021, 42(3):1166-1176.
[33] 杨淼. 典型石煤提钒区和蔬菜基地土壤钒污染特征及基准值研究[D]. 长沙: 中南大学, 2012.
[33] Yang M. Contamination characteristics and permissible value of vanadium in soils from the typical stone coal vanadium extraction plant and vegetable bases[D]. Changsha: Central South University, 2012.
[34] 郭昱. 重金属镉、钒在土壤和紫花苜蓿中的积累特征和迁移行为的研究[D]. 乌鲁木齐: 新疆大学, 2015.
[34] Guo Y. The heavy metal cadmium and vanadium accumulation characteristics and migration behavior research in soil and alfalfa[D]. Urumuchi: Xinjiang University, 2015.
[35] 刘芷宇. 植物根系吸收土壤中离子的途径[J]. 土壤学报, 1964, 12(2):235-242.
[35] Liu Z Y. Pathways through which plant roots absorb ions from soil[J]. Acta Pedologica Sinica, 1964, 12(2):235-242.
[36] Zhang L, Fu K, Yang F, et al. Migration and transformation of heavy metals in the soil of the water-level fluctuation zone in the three gorges reservoir under simulated nitrogen deposition[J]. Journal of Chemistry, 2021, 2021(1):1-10.
[37] Zhang X, Yang H, Cui Z. Evaluation and analysis of soil migration and distribution characteristics of heavy metals in iron tailings[J]. Journal of Cleaner Production, 2018, 172:475-480.
doi: 10.1016/j.jclepro.2017.09.277
[38] 杨洁. 土壤—植物系统中钒的生物有效性研究[D]. 北京: 北京师范大学, 2011.
[38] Yang J. The research about vanadium bioavailability in soil-plant system[D]. Beijing: Beijing Normal University, 2011.
[39] 杨洁, 解琳, 司傲男, 等. 施磷肥土壤中钒的迁移转化规律研究[J]. 农业环境科学学报, 2019, 38(6):1312-1320.
[39] Yang J, Xie L, Si A N, et al. Migration and transformation of vanadium in cultivated soil with phosphate fertilizer[J]. Journal of Agro-Environment Science, 2019, 38(6):1312-1320.
[40] 吴川, 安文慧, 薛生国, 等. 土壤—水稻系统砷的生物地球化学过程研究进展[J]. 农业环境科学学报, 2019, 38(7):1429-1439.
[40] Wu C, An W H, Xue S G, et al. Arsenic biogeochemical processing in the soil-rice system[J]. Journal of Integrative Agriculture, 2019, 38(7):1429-1439.
[41] Chen L, Liu J R, Hu W F, et al. Vanadium in soil-plant system:Source,fate,toxicity,and bioremediation[J]. Journal of Hazardous Materials, 2020, 405(34):124200.
doi: 10.1016/j.jhazmat.2020.124200
[1] 李开富, 马欢, 张艳, 李威龙, 姜纪沂, 黄斌, 章龙管, 秦孟博. 基于时移电阻率法的平谷局部地区地下水时空特征研究[J]. 物探与化探, 2023, 47(4): 1002-1009.
[2] 刘庆宇, 马瑛, 程莉, 沈骁, 张亚峰, 苗国文, 黄强, 韩思琪. 青海东部表层土壤有机碳密度及其空间分布特征[J]. 物探与化探, 2023, 47(4): 1098-1108.
[3] 居字龙, 秦志军, 万翔, 袁航, 张小波, 王登. 湖北红安县生态地质调查土壤重金属分布特征及生态风险评价[J]. 物探与化探, 2022, 46(4): 988-998.
[4] 李生清. 海河流域沉积物重金属形态分布特征及生态风险评估[J]. 物探与化探, 2022, 46(3): 781-786.
[5] 张沁瑞, 李欢, 邓宇飞, 黄勇, 张博, 许一波. 北京东南郊土壤重金属元素分布及其在表层土壤中的富集特征[J]. 物探与化探, 2022, 46(2): 490-501.
[6] 侯佳渝, 杨耀栋, 程绪江. 天津市城区不同功能区绿地土壤重金属分布特征及来源研究[J]. 物探与化探, 2021, 45(5): 1130-1134.
[7] 杨育振, 刘森荣, 杨勇, 李丽芬, 刘圣华, 亢益华, 费新强, 高云亮, 高宝龙. 黄石市城市边缘区土壤重金属分布特征、风险评价及溯源分析[J]. 物探与化探, 2021, 45(5): 1147-1156.
[8] 吴兴盛. 福建省武平县富硒土壤特征及成因分析[J]. 物探与化探, 2021, 45(3): 778-784.
[9] 牛雪, 何锦, 庞雅婕, 明圆圆. 三江平原西部土壤硒分布特征及其影响因素[J]. 物探与化探, 2021, 45(1): 223-229.
[10] 王小高, 王英超, 程宝成, 杨永千, 王杰, 陈鹏. 河南省西簧钒矿岩石地球化学特征及矿床成因[J]. 物探与化探, 2020, 44(5): 1116-1124.
[11] 李朋飞, 陈富荣, 杜国强, 陶春军, 刘超, 刘坤. 安徽涡河沿岸土壤氟含量特征及其影响因素[J]. 物探与化探, 2020, 44(2): 426-434.
[12] 张钊熔, 段星星, 夏明哲. 白银东大沟水体和底泥中重金属污染评价[J]. 物探与化探, 2019, 43(3): 649-657.
[13] 潘永敏, 华明, 廖启林, 许书刚, 张于, 翟辉. 宜兴地区土壤pH值的分布特征及时空变化[J]. 物探与化探, 2018, 42(4): 825-832.
[14] 王卫星, 曹淑萍, 李攻科, 高洪生, 张岩. 天津市州河水质及其底泥重金属污染评价[J]. 物探与化探, 2017, 41(2): 322-327.
[15] 王惠艳, 陈亮, 胡树起, 孙忠军. 渤海湾西部海域表层沉积物重金属含量分布与评价[J]. 物探与化探, 2016, 40(3): 609-613.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com