E-mail Alert Rss
 

物探与化探, 2023, 47(3): 835-844 doi: 10.11720/wtyht.2023.1206

生态地质调查

农田土壤—植物系统中钒的迁移富集规律

赵玉岩,, 姜涛, 杨秉翰, 张泽宇, 李政赫, 李兵, 汤肖丹,

吉林大学 地球探测科学与技术学院,吉林 长春 130026

Migration and enrichment patterns of vanadium in the soil and plant system of farmland

ZHAO Yu-Yan,, JIANG Tao, YANG Bing-Han, ZHANG Ze-Yu, LI Zheng-He, LI Bing, TANG Xiao-Dan,

College of Geoexploration Science and Technology, Jilin University, Changchun 130026, China

通讯作者: 汤肖丹(1985-),女,博士,副教授,研究方向为环境和计算地球化学。Email:tangxiaodan@jlu.edu.cn

第一作者: 赵玉岩(1981-),男,博士,教授,研究方向为应用地球化学。Email: zhaoyuyan@jlu.edu.cn

责任编辑: 蒋实

收稿日期: 2022-04-21   修回日期: 2022-08-20  

基金资助: 山东省第七地质矿产勘查院科技创新项目(QDKY202001)
吉林省生态环境厅环保科研项目(吉环科字第2019-12号)
中央高校基本科研业务费项目(451180304165)

Received: 2022-04-21   Revised: 2022-08-20  

摘要

钒(V)是维持生物体正常生命活动的必需微量元素之一,也是联合国环境规划署列入环境优先污染物的有害元素之一。研究V在土壤—植物系统中的迁移富集规律,对于深入了解其生态地球化学行为、保障农产品安全与人体健康具有重要现实意义。本文以山东临沂某地普通农田为例,对土壤、植物进行系统的采样,分析测试土壤与植物中的V与伴生元素的含量。采用描述性统计、相关性分析、聚类分析等统计方法与单因子污染指数法、潜在生态风险指数法、生物富集系数法等分析方法对研究区内V进行来源分析、污染评价以及V在土壤—植物系统的迁移转换规律的研究。结果表明:V在研究区内分布较为集中,其含量随着Fe、Ti含量的升高而升高,随SiO2、Na2O、Sr、CaO含量升高而下降。研究区内V主要来源于母岩风化,高含量部分与磁铁矿相关。根据单因子指数法与潜在生态风险指数法评价结果,V在研究区土壤内较为清洁,但区内伴生的Cd污染需引起注意。V在植物中主要富集在根部,植物对V的吸收能力总体上与土壤中Cu、Pb、Zn、Ni、Co、Cd、Cr的含量呈负相关,以Cr最为显著;与土壤中As的含量呈正相关。该研究丰富了V的生态地球化学理论,也为区域农业生产、环境质量评估和生态污染防治提供了科学依据。

关键词: ; 土壤—植物系统; 分布特征; 污染评价; 迁移富集

Abstract

Vanadium (V) is an essential trace element required by organisms for maintaining their normal life activities. It is also a harmful element listed as a priority environmental pollutant by the United Nations Environment Programme (UNEP). The study of the migration and enrichment patterns of V in the soil and plant system is of great practical significance for further understanding the ecological geochemical behavior of V and ensuring the safety of agricultural products and human health. This study systematically sampled the soil and plants in some ordinary farmland in Linyi City, Shandong Province and analyzed and tested the contents of V and its associated elements in the soil and plant samples. Moreover, this study conducted the source analysis and pollution assessment of V and investigated the migration and transformation patterns of V in the soil-plant system using statistical methods such as descriptive statistics, correlation analysis, and cluster analysis, as well as the single factor pollution index method, the potential ecological risk index method, and the biological enrichment coefficient method. The results are as follows: V is relatively concentrated in the study area, and its content increases with an increase in the Fe and Ti contents and decreases with an increase in the SiO2, Na2O, Sr, and CaO contents; The V in the study area mainly originates from the weathering of parent rocks, and the parts with a high V content is related to magnetite; As shown by the results of the single factor index method and the potential ecological risk index method, V is relatively clean in the soils of the study area, but attention should be paid to the pollution of the associated Cd; V is enriched primarily in the roots of plants, and plants' absorption capacity of V is generally negatively correlated with the contents of Cu, Pb, Zn, Ni, Co, Cd, and especially Cr in soils and is positively correlated with the As content in soils. This study enriches the ecological geochemical theory of V and provides a scientific basis for regional agricultural production, environmental quality assessment, and ecological pollution control.

Keywords: vanadium; soil-plant system; distribution characteristics; pollution assessment; migration and enrichment

PDF (1991KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

赵玉岩, 姜涛, 杨秉翰, 张泽宇, 李政赫, 李兵, 汤肖丹. 农田土壤—植物系统中钒的迁移富集规律[J]. 物探与化探, 2023, 47(3): 835-844 doi:10.11720/wtyht.2023.1206

ZHAO Yu-Yan, JIANG Tao, YANG Bing-Han, ZHANG Ze-Yu, LI Zheng-He, LI Bing, TANG Xiao-Dan. Migration and enrichment patterns of vanadium in the soil and plant system of farmland[J]. Geophysical and Geochemical Exploration, 2023, 47(3): 835-844 doi:10.11720/wtyht.2023.1206

0 引言

钒(V)作为动植物生长的必需微量元素,在生物体中起着重要作用[1-2]。在植物体内,合理浓度的V会促进植物的生长发育,而高浓度的V则会对植物产生毒性,导致植株矮小、农作物产量降低甚至引起枯萎症等[3-4]。在人体内,适量的V可以维持心血管系统的正常工作,促进造血功能以及有着良好的降糖作用,但过量的V则会在人体中积累产生毒性,导致神经衰弱、咳嗽、腹泻等[5-6]。人体通过饮食摄入的V直接或间接来自于植物,而植物对V的吸收与积累受到土壤中V含量的直接影响[7]。世界卫生组织研究表明,环境中V的来源主要分为天然岩石风化、化石燃料燃烧以及含V矿物冶炼的废物排放3种途径,而最主要的途径为天然岩石的风化。滕彦国等[8]、矫旭东等[9]、龙治杰[10]发现攀枝花钒铁矿地区土壤中V含量已达到我国V土壤背景值的2~3倍,导致该地区植物中V含量也远远高于正常含量。Aihemaiti等[11]通过对比矿区与牧区植物中V含量,发现植物V的高含量区主要集中在V污染区。V在植物不同部位中的含量也有差别,V在根部含量最高且与其根系土中含量几乎一致,而在叶片中含量较少且与根系土中含量相关性较小[12]。不同形态、价态的V的迁移富集能力也不尽相同。汪金舫等[13]研究发现当土壤pH、温度、氧化还原状态等环境条件发生变化时,V的化学形态也会发生相应转化;V在环境中多以五价与四价存在,其中五价V易与有机质形成复合物,易被植物吸收。Shaheen等[14]采用迁移系数将表生环境中的V归为迁移元素。Larsson等[15]通过对V的迁移能力研究发现V的迁移受到有机络合以及还原作用的影响。适当的评价方法[16]可以实现对地区V潜在风险的合理评估。因此,分析V在植物与土壤、生物与环境中的关系,从生态地球化学角度深入探讨V的迁移富集规律及其影响因素,对了解与评估地区V的生态风险具有重要意义。

V在内生作用中易在磁铁矿内富集,山东临沂地区有多处磁铁矿点伴生V,因此本文选择该地区作为研究区,对区内土壤与植物进行系统采样。通过对样品中V及相关元素的含量进行测定,分析土壤中V的分布与来源;研究植物与土壤中V的内在联系,分析其迁移富集规律; 并进一步通过单因子指数法、潜在生态风险指数法、富集系数法等方法对其进行综合土壤质量评价,对该地区土壤健康风险进行评估。

1 材料与方法

1.1 样品采集

根据《土地质量地球化学评价规范》(DZ/T 0295—2016)的样品采集要求,在主要代表性作物和典型土壤区布置采样点,期间避开农作物施肥、种植、生长、收割期及雨季,共采集土壤样品217件,各类植物根系土样品120件,植物样品120件。

土壤样品:土壤样品分为表层土壤样品以及各作物的根系土,样品采集方法相同。去除地表杂物,自地表垂直向下20 cm连续均匀采样,采集的样品弃去动植物残留体、砾石、肥料团块及植物根系等。土壤样品风干后,用碎样机磨碎,过200目筛后,密封在干燥样品袋中备用。

植物样品:采集的植物种类有玉米、西瓜、樱桃、板栗、核桃、花生和地瓜,采样时避开病虫害以及其他特殊的植株,样品采集完成后立刻装入聚乙烯袋中,并扎紧袋口。在实验室内,用水洗净植株后,将植株按不同部位(根、茎、叶、籽粒)分离后风干,用植物碎样机粉碎,过60目筛后,密封在干燥样品袋中备用。

1.2 主要试剂与设备

实验中使用的硫酸、硝酸、高氯酸、盐酸、氢氟酸为优级纯,其余试剂等级为分析纯。实验用水为超纯去离子水,25 ℃下电阻率为18.2 MΩ·cm。

使用电感耦合等离子质谱仪(Nexion 350D,PerkinElmer,美国)(ICP-MS)测定V、Cu、Pb、Zn、Ni、Co、Cd、Cr、As、B含量。使用X射线荧光光谱仪(EDX600B,江苏天瑞)(XRF)测定Al、Ca、Fe、K、Mg、Na、Si、Sr、Ti含量。ICP-MS与XRF工作参数见表1

表1   仪器工作参数

Table 1  Instrument operating parameters

ICP-MSXRF
分析参数设定值分析参数设定值
功率/W1150初始化元素Ag
采样锥孔径/mm1.2初始化通道2210
截取锥孔径/mm1.0管流/μA250
冷却气流量/(L·min-1)18管压/kV40
辅助器流量/(L·min-1)1.2计数率1
雾化器流量/(L·min-1)0.86真空时间/s25
扫描次数20测量时间/s100
测量时间/s60测量次数3

新窗口打开| 下载CSV


1.3 实验方法

1.3.1 土壤与根系土样品V、Cu、Pb、Zn、Ni、Co、Cd、Cr、As含量测定

准确称量0.200 0 g土壤样品于聚四氟乙烯坩埚中,用水润湿后置于电热板上低温加热,依次加入5 mL盐酸、15 mL硝酸加热至近黏稠状,随后加入5 mL氢氟酸、2 mL高氯酸继续加热。消解完全后用2%硝酸冲洗坩埚内壁及坩埚盖,温热溶解残渣。冷却后用2%硝酸定容于50 mL容量瓶中,并于ICP-MS进行V、Cu、Pb、Zn、Ni、Co、Cd、Cr、As元素含量测定。同时,以相同方法做空白实验与对照试验。

1.3.2 植物样品V含量测定

准确称量5.000 0 g样品于50 mL聚四氟乙烯坩埚中,加入10 mL硝酸后置于电热板上消解。如未消解完全取下放冷后补加5 mL硝酸后继续消解,直至消化液呈淡黄色或无色。冷却后用去离子水定容于50 mL容量瓶中,并于ICP-MS进行V元素含量测定。同时,以相同方法做空白实验与对照试验。

1.3.3 土壤样品Al、Ca、Fe、K、Mg、Na、Si、Sr、Ti含量测定

准确称量4.000 0 g土壤样品置于压片模具中,在土壤边缘与底部填入适量硼酸,随后将模具放入压片机中压片,完成后放入干燥器内备用。制备好的样品使用XRF进行Al、Ca、Fe、K、Mg、Na、Si、Sr、Ti含量测定。

1.3.4 土壤样品B含量测定

准确称取0.250 0 g土壤样品于聚四氟乙烯消解管中,用水润湿并加入10 mL王水和2.5 mL氢氟酸,摇匀后置于石墨消解仪上125 ℃消解2 h。冷却后用去离子水定容于50 mL容量瓶中,静置过夜后使用ICP-MS进行B元素含量测定。同时,做空白实验与对照试验。

1.3.5 土壤样品F含量测定

准确称取0.200 0 g样品与0.100 0 g石英砂置于瓷舟中,将瓷舟置于石英燃烧管中,插入进样推棒。通入水蒸气与氧气,逐渐将瓷舟从低温区推至高温区,并保持于1 100 ℃恒温10 min。过程中使用15 mL氢氧化钠接收冷凝液,待冷凝液体积总量到45 mL后水解完成。将冷凝液转移至50 mL容量瓶中冷却后,加入一滴酚酞指示剂,用硝酸溶液中和,待红色消失,加去离子水至刻度处,使用饱和甘汞电极进行F元素含量测定。同时,做空白实验与对照实验。

1.4 评价方法

1.4.1 单因子指数法

单因子指数法(single factor index method,Pi)主要用于评价某一污染物的污染程度[17],其表达式如下:

Pi=CiSi

式中:Pi为单因子污染指数,或称分指数;Ci为土壤中重金属元素i的含量;Sii在土壤环境质量标准(GB 15168—2018)中的筛选值。该方法所采用的土壤环境质量分级标准参见文献[17]。

1.4.2 潜在生态风险指数

潜在生态风险指数法(potential ecological risk index,RI)综合考虑重金属的生态环境和毒理学效应以评价土壤中重金属的污染程度和潜在生态风险[18],其计算公式如下:

RI=i=1nEri=i=1n(Tri×Cfi)=i=1n(Tri×CiCb)

式中:Cfi为重金属元素i的污染指数;Ci为土壤中i的含量;Cbi的参比值,本文采用山东省土壤背景值作为参比值;Erii的单指标潜在生态风险指数;Trii的毒性响应参数[19],依据EriRI大小划分潜在生态危害等级,其分级标准参见文献[18]。

1.4.3 生物富集指数

生物富集系数(biological enrichment factor,BCF)[20]表示生物富集、累积和吸收能力与程度的数量关系,是生物体内某种元素含量与其所生存环境中该元素含量的比值,可定量评估农作物中元素累积的风险和危害程度[20],计算公式如下:

BCF=Ci-plantCi-soil

式中,Ci-plantCi-soil分别为农作物食用部分和土壤中重金属元素i的含量。

2 结果与讨论

2.1 土壤中V的特征与来源分析

2.1.1 V的含量与分布特征

对表层土壤V含量进行统计并绘制箱式图(图1),V在表层土壤中含量均值与50%分位值均大于山东省土壤背景值[21-22],含量主要集中在55×10-6,即该地区表层土壤V含量整体处于偏高水平;变异系数为0.371,大于0.35,故属于高度变异,表明V在研究区内的分布相对集中。

图1

图1   表层土壤V含量箱式图

Fig.1   Box diagram of V content in topsoil


对各农作物根系土中V含量采用最小值、最大值、均值、标准差以及变异系数等特征值进行统计(表2),结果表明:西瓜根系土中V含量最高,均值达到了108×10-6,远高于山东省土壤背景值;板栗的根系土中V含量最低,均值仅为55.83×10-6;其余作物根系土中V含量均在背景值附近。除西瓜、樱桃外,其他作物根系土的V含量变异系数均属于高度变异,表明V在这些作物的种植区域里分布较为集中。

表2   作物根系土V含量特征值统计

Table 2  Characteristic values of V content in crop root soil

作物种类最小值/
10-6
最大值/
10-6
均值/
10-6
标准差变异系数
樱桃35.66136.8677.4924.670.32
西瓜46.63184.28108.8733.790.31
花生31.88113.8776.5157.970.76
板栗35.1374.7555.8328.010.50
地瓜33.90148.1074.8280.751.08
核桃37.39122.3371.5160.060.84
玉米52.04121.7183.0049.260.59

新窗口打开| 下载CSV


2.1.2 土壤中V与重金属元素相关性分析

对土壤中V的含量与其他重金属含量进行Person相关性分析(表3),再将P<0.01水平下与V呈显著相关的元素与V做相关性图解(图2)。可以看出,土壤中V与Cr、Co、Ni、As、Cu在P<0.01水平下均呈现显著正相关,其中Cr、Co、Ni相关性尤为明显,这是由于V、Cr与Co在元素地球化学上同属于铁族元素,它们之间的地球化学特征与行为十分相似,在成矿过程中常共生[23]。且土壤各元素之间相关性也较为明显,这既反映了这些元素之间相似的地球化学特征,也表明污染物来源相同。

表3   土壤中V与重金属含量的相关性分析

Table 3  Correlation analysis of V and heavy metal contents in soil

元素VCuPbZnNiCoCdCrAs
V10.318**0.0810.199**0.697**0.891**-0.0550.926**0.351**
Cu10.351**0.858**0.675**0.434**-0.060.266**0.06
Pb10.507**0.0410.08-0.0210.1010.462**
Zn10.333**0.285**-0.154*0.219**0.129
Ni10.816**0.0510.634**0.178**
Co1-0.0140.930**0.352**
Cd1-0.0680.160*
Cr10.393**
As1

注:“**”表示在0.01水平上显著相关;“*”表示在0.05水平上显著相关。

新窗口打开| 下载CSV


图2

图2   土壤中V与重金属含量的相关性

Fig.2   Correlation of V and heavy metal contents in soil


2.1.3 土壤中V来源分析

天然土壤中V的来源主要有3种途径,分别为岩石风化、化石燃料燃烧释放以及含V矿产开采与冶炼。但在较大的农业区域内, V分布的最主要影响因素是由岩石风化作用控制的成土母质类型、土壤类型以及土壤矿物组成等,也就是说土壤中V的含量主要取决于成土母质(母岩)中V的含量[24-25]。研究区土壤成土母质有3种类型:残坡积物、冲积物和洪冲积物。其中,由新生代花岗质片麻岩、中生代花岗岩、闪长岩等酸性岩和钙质岩风化形成的残坡积物是区内分布面积最大、范围最广的成土母质。面积分布较小的母质为冲积物和洪冲积物的土壤主要位于冲积平原和河谷平原或阶地后缘等地,其物质来源也是与上述残坡积物相同。根据元素地球化学规律,V属于铁族元素,在自然界分布广泛,多为分散分布,在中酸性岩浆中不富集。研究区内岩石主要以中酸性为主的背景决定了V在区域内有一定的分布但含量不会普遍偏高。有少量磁铁矿点分布的情况又决定了在局部地区可能会有V含量的波动。因此,可以通过分析V与造岩元素之间的关系进一步对研究区土壤中V的特征进行讨论。

将V与造岩元素做相关性分析(表4),V与Fe、Ti表现出显著的正相关关系;与Na2O、SiO2、Sr、CaO表现出了显著负相关的关系;与F、Al2O3、K、B、MgO也表现出正相关,相关系数依次降低。

表4   V与造岩元素的相关性分析

Table 4  Correlation analysis of V and rock-making elements

元素Al2O3CaOFeKMgONa2OSiO2Sr
相关系数0.279-0.176**0.637**0.2750.125-0.464**-0.143*-0.367**
元素TiBF
相关系数0.653**0.1870.347

注:“**”表示在0.01水平(双侧)上显著相关。

新窗口打开| 下载CSV


采用组内联接的聚类方法,度量标准采用欧式距离,对V与造岩元素做聚类分析(图3)。当d=0.2时,可将元素分为3类,分别为:Al2O3、B;Fe、Ti、V、K、F、MgO;CaO、SiO2、Na2O、Sr。其中,V与Fe、Ti、K、F、MgO属于同一类别。根据造岩矿物的元素组成分析,推测此类元素主要对应辉石、角闪石、黑云母以及磁铁矿、钛铁矿等矿物,与花岗质片麻岩、中生代花岗岩、闪长岩为代表的酸性岩中的暗色矿物组成相对应,也符合V易于富集在暗色矿物中,以类质同象形式存在于矿物晶格中代替Fe2+、Ti4+、Mg2+的元素地球化学性质[26]。另外两类元素组成主要对应长石类矿物等浅色矿物以及其风化产物高岭石等次生矿物[27-28]。V在岩浆成岩过程难以在这些浅色矿物内富集,这与聚类分析结果相符。

图3

图3   V与造岩元素的聚类分析谱系

Fig.3   Cluster analysis pedigree diagram of V and rock-making elements


综合相关性分析、聚类分析以及V的地球化学性质,研究区内V随着Fe、Ti含量升高而升高,随SiO2、Na2O、Sr、CaO含量升高而下降,推测研究区母岩中的V主要存在于暗色矿物中,在长石类矿物以及酸性岩中含量很少。母岩中的V主要来源于岩浆作用晚期,V代替Fe2+、Mg2+进入矿物晶格富集于磁铁矿、钛铁矿等矿物以及辉石、角闪石、黑云母基本造岩矿物中,后风化形成土壤分布于研究区。研究区表层土壤V含量的变异系数较高,V在研究区内分布较为集中。结合地质资料发现,在研究区内有磁铁矿的分布,通过比对V含量较高的采样位置与矿点位置,发现其在空间上较为吻合,推测研究区表层土壤中的V主要来源是风化的成土母岩,部分区域V含量较高与附近的磁铁矿有关。

2.2 土壤V污染分析评价

2.2.1 土壤V单因子污染评价

根据单因子指数法对V单因子污染进行评价,统计结果显示,未受到V污染的样品(Pi<1)占 36.1%,受到轻度污染(1<Pi<3)的样品占63.9%,研究区土壤总体处于无污染或轻微污染水平。目前国内尚未制定土壤V环境质量标准,所以本文参考加拿大土壤V环境质量标准[29]。本次采集的样品V含量均低于加拿大土壤Ⅱ级环境标准,即土壤质量基本上对植物和环境不造成污染和危害,与单因子指数法评价结果相符合。

2.2.2 表层土壤潜在生态风险评价

对土壤进行潜在生态风险评价,结果表明,样品中V的潜在生态风险指数均小于40,平均指数为2.47,属于轻微生态危害。对土壤中重金属元素进行综合潜在生态风险评价,结果表明,土壤样品中Zn、Ni、Co、Cr和As潜在生态风险指数均小于40,为轻微生态风险等级。Cu和Pb潜在生态风险系数均值分别为18.05和4.93,总体上均以轻生态危害等级为主,其中Cu存在7个中等生态危害的样品,Pb存在两个中等生态危害的样品,一个强生态危害的样品。Cd潜在生态风险指数分布在5.66~667.91,其中轻微生态危害等级的样品占20.4%,中等生态危害等级样品占3.2%,强生态危害等级样品占5.1%,很强生态危害等级样品占42.6%,极强生态危害等级样品占28.7%,其潜在生态危害系数平均值为235.57,以很强生态危害等级为主,单元素生态危害较为严重。从研究区根系土壤重金属潜在生态风险指数Er的箱式图(图4)可见,各重金属元素中Cd潜在生态危害最大,V在该研究区潜在生态危害较轻。根据生态风险指数特征并综合土壤重金属相关系数(表3)可将元素分为以下几类: Cd表现出较高的生态风险,其特征与其他元素表现出较大差异,这也与表3中得出的结论基本一致;Cu、Pb、Zn的相关性较高,指数特征较为相似,表现为整体分布较为集中,存在高值区,在高值区分布较为离散;V、Ni、Cr相关性较高,指数特征较为相似,表现为整体分布较为集中,在高值区分布较为连续;As虽与其他元素具有一定的相关性,但相关性较低,指数特征与其他元素较为不同。由此可见,各元素的生态风险指数特征与相关性特征基本一致。研究区土壤重金属总潜在生态风险指数RI分布范围为36.85~704.66,除Cd外,存在轻微至中等的生态风险。

图4

图4   土壤重金属元素生态风险指数

Fig.4   Ecological risk index of heavy metal elements in soil


综上所述,单因子评价法与潜在生态风险评价法所获得的结果相同。研究区V较为清洁,仅个别样品存在轻微污染,生态危害等级较低。

2.3 V在土壤—植物系统中的迁移富集

2.3.1 不同植物中V的含量特征

生物富集系数是衡量一个植物对某一元素富集能力的指标,富集系数越大,其对土壤中该元素的富集能力就越强。如果富集系数>1,说明该作物对该元素具有富集能力。由于不同的植物其遗传特性不同,其对V的吸收富集能力也不尽相同,这可能与各作物的生长周期、生长特性以及对根系土中V的敏感程度有一定关系[30-31]。由式(3)计算得V在不同作物中的富集系数(表5),对V富集能力较强的为花生、玉米、核桃,富集系数分别为0.19、0.15、0.17;而西瓜、樱桃等水果的富集系数仅为0.01。综合比较各作物对V的富集系数发现,各作物对V的富集能力均较低,即抗V污染能力较强,以西瓜、樱桃最为显著。

表5   作物中V的富集系数

Table 5  Enrichment coefficients of V in crops

作物西瓜花生玉米地瓜
富集系数0.010.190.150.07
作物樱桃板栗核桃
富集系数0.010.070.17

新窗口打开| 下载CSV


将作物中不同部位V的含量特征进行了统计(表6),相同作物不同部位中V的含量也存在较大差异。V主要富集在植物的根系,在根、茎、叶、果实中的含量依次递减。核桃、地瓜中V在叶与果实中含量相近,部分作物叶中V的含量大于茎中的含量。由于V在植物中表现为根部富集,V过量对植物的危害也表现为根系伤害。由V在各部位的含量关系推测,V在作物体内的主要运输途径为:由根部吸收,再依次向茎叶运输,最终才会传递到果实之中。由此造成V在根、茎、叶中含量依次递减的现象。在西瓜与花生中V在叶中含量超过了茎中的含量,产生此现象可能由以下两个原因导致:V在植物叶片内参与叶绿素的合成,使V在叶内累积[32-33];植物对V的吸收除了根在土壤吸收,叶片也会对大气粉尘中的V进行吸收[34]

表6   作物不同器官V含量特征值统计

Table 6  Characteristic values of V content in different organs of crops

作物种类器官最小值/
10-6
最大值/
10-6
中位数/
10-6
均值/
10-6
西瓜5.6889.4425.5436.44
3.6374.5313.8321.92
4.8772.3227.3928.84
0.064.860.861.03
0.101.500.830.84
果实0.032.520.400.64
花生24.7492.6858.3155.88
3.2043.8011.4314.89
13.6038.7518.0920.56
果实9.7516.7110.1312.31
玉米12.1225.26422.4620.31
119420.7418.7118.31
4.7315.519.519.47
果实7.0620.989.2911.40
地瓜2.6422.268.2410.54
0.3010.734.194.54
果实2.488.883.744.44
樱桃1.065.863.003.11
果实0.131.370.510.57
板栗4.3016.629.678.54
果实2.3216.333.415.55
核桃3.0717.939.2910.25
果实7.4717.509.3110.64

新窗口打开| 下载CSV


2.3.2 伴生元素对植物中V吸收的影响

植物从土壤中吸收元素是一个复杂的过程,某一元素的存在可以抑制或促进植物对另一元素的吸收,而对其他元素无影响。这种元素之间的互相干扰称为拮抗与协同作用[35]

几种重金属同时存在时常表现出毒性的协同、加和或者拮抗作用[36-37]。一般来说,拮抗作用主要发生在同族元素、同周期元素或理化性质相似的元素间,因为它们在植物吸收过程中会相互竞争类似的结合部位,所以这些重金属之间的复合污染作用会直接或间接影响元素的生物有效性[38-39]。本部分以西瓜为例(表7),根据根系土重金属元素的含量与西瓜不同器官V的吸收能力对比分析,确定重金属元素对V吸收的影响。西瓜各器官对V的吸收能力与土壤中Cu、Pb、Zn、Ni、Co、Cd、Cr含量整体呈弱负相关的趋势。其中,Ni与西瓜籽中的V含量、Co与西瓜籽与果实中的V含量、Cd与西瓜根中的V含量以及Cr与西瓜茎、叶、籽与果实中的V含量出现了显著负相关,即在一定程度上可以认为Ni、Co、Cd、Cr在植物对V吸收的过程中起到了拮抗作用。主要原因在于,这些元素在生物地球化学中属同族元素,生物地球化学行为相似,在植物体中可能存在相互竞争关系,其中以Cr更为显著。Cr与V属同周期相邻过渡元素,理化性质相似,会竞争类似的结合部位,使得二者在多个器官中呈现显著负相关,表现出明显的拮抗作用。除根部外,西瓜各器官对V的吸收能力与土壤中的As含量整体出现了弱的正相关趋势,这表明研究区内植物对As与V表现出协同吸收的现象。而根部V吸收能力与土壤中As含量呈弱的负相关关系可能由以下原因导致:As在土壤中主要存在形式为砷酸盐(五价砷)与亚砷酸盐(三价砷),其中砷酸盐是一种磷酸盐类似物,它主要通过磷酸盐转运蛋白吸收而进入植物根部[40]。而钒酸盐与磷酸盐具有相似的电荷结构,钒酸盐也能通过磷的吸收系统进入到植物根部[41]。因此,砷酸盐与钒酸盐在植物根部吸收过程中表现出一定的竞争关系。

表7   西瓜各器官V吸收能力与土壤重金属含量的相关性统计

Table 7  Correlation statistics between V uptake capacity in watermelon organs and heavy metal contents in soil

部位CuPbZnNiCoCdCrAs
-0.239-0.247-0.122-0.191-0.071-0.398*-0.075-0.184
-0.0240.077-0.133-0.204-0.262-0.359-0.365*0.353
-0.214-0.132-0.355-0.038-0.234-0.115-0.417*0.14
-0.08-0.021-0.151-0.182-0.208-0.173-0.2570.013
-0.244-0.145-0.308-0.512**-0.590**-0.188-0.606**0.132
果实-0.279-0.224-0.319-0.347-0.399*-0.119-0.409*0.174

注:“*”表示在0.05水平显著相关;“**”表示在0.01水平显著相关。

新窗口打开| 下载CSV


3 结论

1)通过对研究区表层土壤中V的分布特征统计以及V与重金属元素和造岩元素的相关性分析、聚类分析可知,研究区内V分布较为集中,其含量随着Fe、Ti含量升高而升高,随SiO2、Na2O、Sr、CaO含量升高而下降。结合相应地质资料推测,该地区表层土壤中V的主要来源是风化的成土母岩,部分区域V含量较高与附近的磁铁矿有关。

2)通过对研究区V的单因子污染以及表层土壤生态风险进行评价,研究区V总体处于清洁水平,即满足植物正常生长所需,但矿区附近含量偏高,可在矿区与农业区、生活区之间设置隔离带来防止污染的扩散。此外,研究区Cd的生态风险也需引起注意。

3)V主要集中在研究区作物的根部,整体表现出根>茎>叶>果实,部分作物中叶的含量大于茎的含量。在不同作物中,西瓜、樱桃抗V污染能力较强。西瓜各部位对V的吸收能力与土壤中Cu、Pb、Zn、Ni、Co、Cd、Cr的含量整体表现出弱负相关趋势,其中以Cr最为显著,认为Cr与V的吸收表现为拮抗作用;与土壤中As的含量表现为弱的正相关趋势,认为V与As有协同吸收作用。

参考文献

曾英, 倪师军, 张成江.

钒的生物效应及其环境地球化学行为

[J]. 地球科学进展, 2004, 19(S1):472-476.

[本文引用: 1]

Zeng Y, Ni S J, Zhang C J.

Biological effect and environment geochemical behavior of vanadium

[J]. Advance in Earth Science, 2004, 19(S1):472-476.

[本文引用: 1]

杨金燕, 唐亚, 李廷强, .

我国钒资源现状及土壤中钒的生物效应

[J]. 土壤通报, 2010, 41(6):1511-1517.

[本文引用: 1]

Yang J Y, Tang Y, Li T Q, et al.

Soil biogeochemistry and resources situation of vanadium in China

[J]. Chinese Journal of Soil Science, 2010, 41(6):1511-1517.

[本文引用: 1]

Larsson M A, Baken S, Gustafsson J P, et al.

Vanadium bioavailability and toxicity to soil microorganisms and plants

[J]. Environmental Toxicology and Chemistry, 2013, 32(10):2266-2273.

PMID:23832669      [本文引用: 1]

Vanadium, V, is a redox-sensitive metal that in solution, under aerobic conditions, prevails as the oxyanion vanadate(V). There is little known regarding vanadium toxicity to soil biota, and the present study was set up to determine the toxicity of added vanadate to soil organisms and to investigate the relationship between toxicity and vanadium sorption in soils. Five soils with contrasting properties were spiked with 7 different doses (3.2-3200 mg V kg(-1)) of dissolved vanadate, and toxicity was measured with 2 microbial and 3 plant assays. The median effective concentration (EC50) thresholds of the microbial assays ranged from 28 mg added V kg(-1) to 690 mg added V kg(-1), and the EC50s in the plant assays ranged from 18 mg added V kg(-1) to 510 mg added V kg(-1). The lower thresholds were in the concentration range of the background vanadium in the untreated control soils (15-58 mg V kg(-1)). The vanadium toxicity to plants decreased with a stronger soil vanadium sorption strength. The EC50 values for plants expressed on a soil solution basis ranged from 0.8 mg V L(-1) to 15 mg V L(-1) and were less variable among soils than corresponding values based on total vanadium in soil. It is concluded that sorption decreases the toxicity of added vanadate and that soil solution vanadium is a more robust measure to determine critical vanadium concentrations across soils.© 2013 SETAC.

袁莉, 杨鹰, 高铭宇, .

微量元素钒的生物学效应

[J]. 中国兽医科技, 1999, 29(1):21-23.

[本文引用: 1]

Yuan L, Yang Y, Gao M Y, et al.

Biological effects of trace element vanadium

[J]. Chinese Journal of Veterinary Science and Technology, 1999, 29(1):21-23.

[本文引用: 1]

吴涛, 兰昌云.

环境中的钒及其对人体健康的影响

[J]. 广东微量元素科学, 2004, 11(1):11-15.

[本文引用: 1]

Wu T, Lan C Y.

Vanadium in environment and its harm to human health

[J]. Trace Elements Science, 2004, 11(1):11-15.

[本文引用: 1]

王平利, 张成江.

土壤中钒的环境地球化学研究现状

[J]. 物探化探计算技术, 2004, 26(3):247-251.

[本文引用: 1]

Wang P L, Zhang C J.

Environment geochemistry research progress of vanadium in soil

[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2004, 26(3):247-251.

[本文引用: 1]

张庆强. 土壤中钒的潜在生态风险研究[D]. 北京: 北京师范大学, 2009.

[本文引用: 1]

Zhang Q Q. Potential ecological risk of vanadium in the soil[D]. Beijing: Beijing Normal University, 2009.

[本文引用: 1]

滕彦国, 张庆强, 肖杰, .

攀枝花公园土壤中钒的地球化学形态及潜在生态风险

[J]. 矿物岩石, 2008, 28(2):102-106.

[本文引用: 1]

Teng Y G, Zhang Q Q, Xiao J, et al.

Geochemical speciation and potential ecological risk of vanadium in the soil in the panzhihua park

[J]. Journal of Mineralogy and Petrology, 2008, 28(2):102-106.

[本文引用: 1]

矫旭东, 滕彦国.

土壤中钒污染的修复与治理技术研究

[J]. 土壤通报, 2008, 39(2):448-452.

[本文引用: 1]

Jiao X D, Teng Y G.

Techniques on soil remediation and disposal of vanadium pollution

[J]. Chinese Journal of Soil Science, 2008, 39(2):448-452.

[本文引用: 1]

龙治杰. 攀枝花地区土壤重金属分布特征及钒元素来源解析[D]. 成都: 成都理工大学, 2018.

[本文引用: 1]

Long Z J. A study on the spatial distribution of heavy metal elements and source apportionment of vanadium in Panzhihua area soil[D]. Chengdu: Chengdu University of Technology, 2018.

[本文引用: 1]

Aihemaiti A, Gao Y, Meng Y, et al.

Review of plant-vanadium physiological interactions,bioaccumulation,and bioremediation of vanadium-contaminated sites

[J]. Science of the Total Environment, 2020, 712:135637.

DOI:10.1016/j.scitotenv.2019.135637      URL     [本文引用: 1]

Aikelaimu A, Jiang J G, Li D A, et al.

Toxic metal tolerance in native plant species grown in a vanadium mining area

[J]. Environmental Science and Pollution Research International, 2017, 24:26839-26850.

DOI:10.1007/s11356-017-0250-5      PMID:28963601      [本文引用: 1]

Vanadium (V) has been extensively mined in China and caused soil pollution in mining area. It has toxic effects on plants, animals and humans, posing potential health risks to communities that farm and graze cattle adjacent to the mining area. To evaluate in situ phytoremediation potentials of native plants, V, chromium, copper and zinc concentrations in roots and shoots were measured and the bioaccumulation (BAF) and translocation (TF) efficiencies were calculated. The results showed that Setaria viridis accumulated greater than 1000 mg kg V in its shoots and exhibited TF > 1 for V, Cr, Zn and BAF > 1 for Cu. The V accumulation amount in the roots of Kochia scoparia also surpassed 1000 mg kg and showed TF > 1 for Zn. Chenopodium album had BAF > 1 for V and Zn and Daucus carota showed TF > 1 for Cu. Eleusine indica presented strong tolerance and high metal accumulations. S. viridis is practical for in situ phytoextractions of V, Cr and Zn and phytostabilisation of Cu in V mining area. Other species had low potential use as phytoremediation plant at multi-metal polluted sites, but showed relatively strong resistance to V, Cr, Cu and Zn toxicity, can be used to vegetate the contaminated soils and stabilise toxic metals in V mining area.

汪金舫, 刘铮.

土壤中钒的化学结合形态与转化条件的研究

[J]. 中国环境科学, 1995, 15(1):34-39.

[本文引用: 1]

Wang J F, Liu Z.

Studies on chemical forms of vanadium in soil and their transformation

[J]. China Environment Science, 1995, 15(1):34-39.

[本文引用: 1]

Shaheen S M, Alessi D S, Tack F, et al.

Redox chemistry of vanadium in soils and sediments:Interactions with colloidal materials,mobilization,speciation,and relevant environmental implications:A review

[J]. Advances in Colloid and Interface Science, 2019, 265:1-13.

DOI:S0001-8686(18)30315-4      PMID:30685738      [本文引用: 1]

Vanadium (V), although serving as an important component of industrial activities, has bioinorganic implications to pose highly toxic hazards to humans and animals. Soils and sediments throughout the world exhibit wide ranges of vanadium concentrations. Although vanadium toxicity varies between different species, it is mainly controlled by soil redox potential (E). Nonetheless, knowledge of the redox geochemistry of vanadium lags in comparison to what is known about other potentially toxic elements (PTEs). In particular, the redox-induced speciation and mobilization of vanadium in soils and sediments and the associated risks to the environment have not been reviewed to date. Therefore, this review aims to address 1) the content and geochemical fate of vanadium in soils and sediments, 2) its redox-induced release dynamics, 3) redox-mediated chemical reactions between vanadium and soil organic and inorganic colloidal materials in soil solution, 4) its speciation in soil solution and soil-sediments, and 5) the use of advanced geochemical and spectroscopic techniques to investigate these complex systems. Vanadium (+5) is the most mobile and toxic form of its species while being the thermodynamically stable valence state in oxic environments, while vanadium (+3) might be expected to be predominant under euxinic (anoxic and sulfidic) conditions. Vanadium can react variably in response to changing soil E: under anoxic conditions, the mobilization of vanadium can decrease because vanadium (+5) can be reduced to relatively less soluble vanadium (+4) via inorganic reactions such as with HS and organic matter and by metal-reducing microorganisms. On the other hand, dissolved concentrations of vanadium can increase at low E in many soils to reveal a similar pattern to that of Fe, which may be due to the reductive dissolution of Fe(hydr)oxides and the release of the associated vanadium. Those differences in vanadium release dynamics might occur as a result of the direct impact of E on vanadium speciation in soil solution and soil sediments, and/or because of the E-dependent changes in soil pH, chemistry of (Fe)(hydr)oxides, and complexation with soil organic carbon. Release dynamics of vanadium in soils may also be affected positively by soil pH and the release of aromatic organic compounds. X-ray absorption spectroscopy (XAS) is a powerful tool to investigate the speciation of vanadium present in soil. X-ray absorption near edge structure (XANES) is often used to constrain the average valence state of vanadium in soils and sediments, and in limited cases extended X-ray absorption fine structure (EXAFS) analysis has been used to determine the average molecular coordination environment of vanadium in soil components. In conclusion, this review presents the state of the art about the redox geochemistry of vanadium and thus contributes to a better understanding of the speciation, potential mobilization, and environmental hazards of vanadium in the near-surface environment of uplands, wetlands, and agricultural ecosystems as affected by various colloidal particles. Further research is needed to elucidate the geochemistry and speciation of vanadium in the dissolved, colloidal, and soil sediments phases, including the determination of factors that control the redox geochemistry of vanadium.Copyright © 2019 Elsevier B.V. All rights reserved.

Larsson M A, Baken S, Gustafsson J P, et al.

Vanadium bioavailability and toxicity to soil microorganisms and plants

[J]. Environmental Toxicology & Chemistry, 2013, 32(10):2266-2273.

[本文引用: 1]

滕彦国, 徐争启, 王金生. 钒的环境生物地球化学[M]. 北京: 科学出版社, 2011.

[本文引用: 1]

Teng Y G, Xu Z Q, Wang J S. Environmental biogeochemistry of vanadium[M]. Beijing: Science Press, 2011.

[本文引用: 1]

孔凡彬, 刘阳.

单因子指数法和内梅罗指数法在土壤环境质量评价中的比较

[J]. 甘肃科技, 2014, 30(3):21-22.

[本文引用: 2]

Kong F B, Liu Y.

Comparison of single factor index method and Nemerow index method in soil environmental quality assessment

[J]. Gansu Science and Technology, 2014, 30(3):21-22.

[本文引用: 2]

周亚龙, 郭志娟, 王成文, .

云南省镇雄县土壤重金属污染及潜在生态风险评估

[J]. 物探与化探, 2019, 43(6):1358-1366.

[本文引用: 2]

Zhou Y L, Guo Z J, Wang C W, et al.

Assessment of heavy metal pollution and potential ecological risks of soils in Zhenxiong County,Yunnan Province

[J]. Geophysical and Geochemical Exploration, 2019, 43(6):1358-1366.

[本文引用: 2]

徐争启, 倪师军, 庹先国, .

潜在生态危害指数法评价中重金属毒性系数计算

[J]. 环境科学与技术, 2008, 31(2):112-115.

[本文引用: 1]

Xu Z Q, Ni S J, Tuo X G, et al.

Calculation of heavy metals' toxicity coefficient in the evaluation of potential ecological risk index

[J]. Environment Science and Technology, 2008, 31(2):112-115.

[本文引用: 1]

夏伟, 吴冬妹, 袁知洋.

土壤—农作物系统中重金属元素迁移转化规律研究——以湖北宣恩县为例

[J]. 资源环境与工程, 2018, 32(4):563-568.

DOI:10.16536/j.cnki.issn.1671-1211.2018.04.009      [本文引用: 2]

为研究土壤中重金属元素在不同作物系统中的迁移转换规律及其控制影响,采集湖北宣恩地区的茶叶、水稻、玉米、土豆、黄金梨、白柚及其对应的根系土样品,对根系土中的重金属元素含量、生物可利用性、内梅罗综合污染指数以及农作物中的重金属富集程度进行分析。结果表明,农作物土壤中Cd平均含量显著高于宣恩县土壤背景值。评价区土壤中Pb、Hg、As、Cu和Zn等重金属元素主要为强有机结合态(F6)与残渣态(F7),很难以离子形态释放出来,而Cd在土壤中的赋存形态主要为水溶态(F1)和离子交换态(F2),占比高达35.59%,很容易被生物吸收利用。评价区水稻根系土已经遭受Cd污染,农作物重金属污染一方面与土壤背景值有关,另一方面与生物可利用性相关。除玉米茎部特别富集Cd和水稻根部特别富集As外,所收集的农作物可食部分从根系土中转移Pb、Cd、Hg、As、Cu和Zn等6种重金属元素的能力很弱。

Xia W, Wu D M, Yuan Z Y.

Study on the migration and transformation law of heavy metals in soil-crop system

[J]. Resources Environment and Engineering, 2018, 32(4):563-568.

DOI:10.16536/j.cnki.issn.1671-1211.2018.04.009      [本文引用: 2]

In order to study the law of soil heavy metal migration and transformation in different crop systems and its control effects,collecting tea,rice,maize,potatoes,gold pear,white shaddock and their corresponding root soil samples in Xuanen county of Hubei Province,the contents of heavy metal elements,bioavailability,the comprehensive contamination index and the degree of heavy metal concentration in crops are analyzed.The results show that the average content of Cd in crop soil is significantly higher than that in Xuanen county.Heavy metal elements such as Pb,Hg,As,Cu and Zn in the soil of the evaluation area are mainly fraction bound to organic matter (F6) and residue fraction (F7) which is difficult to release the ion form,while the occurrence form of Cd in the soil is mainly water soluble states (F1) and ion exchange states (F2),accounting for up to 35.59%,which is easy to be absorbed and used by organisms.The rice root soil in the evaluation area has been contaminated with Cd,heavy metal pollution of crops is related to soil background value on one hand and bioavailability on the other.In addition to the special enrichment of Cd in maize stems and As in rice roots,six heavy metal elements,such as Pb,Cd,Hg,As,Cu and Zn,are weakly transferred from the edible part of the collected crop from the root soil.

庞绪贵, 代杰瑞, 陈磊, .

山东省17市土壤地球化学背景值

[J]. 山东国土资源, 2019, 35(1):46-56.

[本文引用: 1]

Pang X G, Dai J R, Chen L, et al.

Soil geochemical background value of 17 cities in Shandong Province

[J]. Shandong Land and Resources, 2019, 35(1):46-56.

[本文引用: 1]

庞绪贵, 代杰瑞, 喻超, .

山东省17市土壤地球化学基准值

[J]. 山东国土资源, 2019, 35(1):36-45.

[本文引用: 1]

Pang X G, Dai J R, Yu C, et al.

Soil geochemical reference value of 17 cities in Shandong Province

[J]. Shandong Land and Resources, 2019, 35(1):36-45.

[本文引用: 1]

林师整.

宁芜地区钒的地球化学特征

[J]. 地球化学, 1980, 9(2):122-133.

[本文引用: 1]

Lin S Z.

Geochemical characteristics of vanadium as exemplified from a certain district in China

[J]. Geochimica, 1980, 9(2):122-133.

[本文引用: 1]

汪金舫, 刘铮.

钒在土壤中的含量分布和影响因素

[J]. 土壤学报, 1994, 31(1):61-67.

[本文引用: 1]

Wang J F, Liu Z.

Vanadium distribution and its affecting factors in soils of China

[J]. Acta Pedologica Sinica, 1994, 31(1):61-67.

[本文引用: 1]

Chen L, Liu J R, Hu W F, et al.

Vanadium in soil-plant system:Source,fate,toxicity,and bioremediation

[J]. Journal of Hazardous Materials, 2021, 405:124200.

DOI:10.1016/j.jhazmat.2020.124200      URL     [本文引用: 1]

刘英俊, 曹励明. 元素地球化学导论[M]. 北京: 地质出版社,1987.

[本文引用: 1]

Liu Y J, Cao L M. Introduction to elemental geochemistry[M]. Beijing: Geogical Publishing House,1987.

[本文引用: 1]

郝立波, 戚长谋. 地球化学原理[M]. 北京: 地质出版社, 2004.

[本文引用: 1]

Hao L B, Qi C M. Principles of geochemistry[M]. Beijing: Geogical Publishing House, 2004.

[本文引用: 1]

卢良兆, 许文良. 岩石学[M]. 北京: 地质出版社, 2017.

[本文引用: 1]

Lu L Z, Xu W L. Petrology[M]. Beijing: Geogical Publishing House, 2017.

[本文引用: 1]

Canadian Council of Ministers of the Environment.

A protocol for the derivation of environmental and human healthsoil quality guidelines

[R]. Winnipeg:CCME, 2006.

[本文引用: 1]

周亚龙, 杨志斌, 王乔林, .

雄安新区农田土壤-农作物系统重金属潜在生态风险评估及其源解析

[J]. 环境科学, 2021, 42(4):2003-2015.

[本文引用: 1]

Zhou Y L, Yang Z B, Wang Q L, et al.

Potential ecological risk assessment and source analysis of heavy metals in soil-crop system in Xiong'an New District

[J]. Environmental Science, 2021, 42(4):2003-2015.

[本文引用: 1]

Ekaterina G, Alina B, Natalia R, et al.

Monitoring of the migratory ability of heavy metals in the soil-plant system

[J]. Biointerface Research in Applied Chemistry, 2020, 11(3):10351-10357.

DOI:10.33263/BRIAC      URL     [本文引用: 1]

孙厚云, 卫晓锋, 孙晓明, .

钒钛磁铁矿尾矿库复垦土地及周边土壤—玉米重金属迁移富集特征

[J]. 环境科学, 2021, 42(3):1166-1176.

[本文引用: 1]

Sun H Y, Wei X F, Sun X M, et al.

Bioaccumulation and translocation characteristics of heavy metals in a soil-maize system in reclaimed land and surrounding areas of typical vanadium-titanium magnetite tailings

[J]. Environmental Science, 2021, 42(3):1166-1176.

[本文引用: 1]

杨淼. 典型石煤提钒区和蔬菜基地土壤钒污染特征及基准值研究[D]. 长沙: 中南大学, 2012.

[本文引用: 1]

Yang M. Contamination characteristics and permissible value of vanadium in soils from the typical stone coal vanadium extraction plant and vegetable bases[D]. Changsha: Central South University, 2012.

[本文引用: 1]

郭昱. 重金属镉、钒在土壤和紫花苜蓿中的积累特征和迁移行为的研究[D]. 乌鲁木齐: 新疆大学, 2015.

[本文引用: 1]

Guo Y. The heavy metal cadmium and vanadium accumulation characteristics and migration behavior research in soil and alfalfa[D]. Urumuchi: Xinjiang University, 2015.

[本文引用: 1]

刘芷宇.

植物根系吸收土壤中离子的途径

[J]. 土壤学报, 1964, 12(2):235-242.

[本文引用: 1]

Liu Z Y.

Pathways through which plant roots absorb ions from soil

[J]. Acta Pedologica Sinica, 1964, 12(2):235-242.

[本文引用: 1]

Zhang L, Fu K, Yang F, et al.

Migration and transformation of heavy metals in the soil of the water-level fluctuation zone in the three gorges reservoir under simulated nitrogen deposition

[J]. Journal of Chemistry, 2021, 2021(1):1-10.

[本文引用: 1]

Zhang X, Yang H, Cui Z.

Evaluation and analysis of soil migration and distribution characteristics of heavy metals in iron tailings

[J]. Journal of Cleaner Production, 2018, 172:475-480.

DOI:10.1016/j.jclepro.2017.09.277      URL     [本文引用: 1]

杨洁. 土壤—植物系统中钒的生物有效性研究[D]. 北京: 北京师范大学, 2011.

[本文引用: 1]

Yang J. The research about vanadium bioavailability in soil-plant system[D]. Beijing: Beijing Normal University, 2011.

[本文引用: 1]

杨洁, 解琳, 司傲男, .

施磷肥土壤中钒的迁移转化规律研究

[J]. 农业环境科学学报, 2019, 38(6):1312-1320.

[本文引用: 1]

Yang J, Xie L, Si A N, et al.

Migration and transformation of vanadium in cultivated soil with phosphate fertilizer

[J]. Journal of Agro-Environment Science, 2019, 38(6):1312-1320.

[本文引用: 1]

吴川, 安文慧, 薛生国, .

土壤—水稻系统砷的生物地球化学过程研究进展

[J]. 农业环境科学学报, 2019, 38(7):1429-1439.

[本文引用: 1]

Wu C, An W H, Xue S G, et al.

Arsenic biogeochemical processing in the soil-rice system

[J]. Journal of Integrative Agriculture, 2019, 38(7):1429-1439.

[本文引用: 1]

Chen L, Liu J R, Hu W F, et al.

Vanadium in soil-plant system:Source,fate,toxicity,and bioremediation

[J]. Journal of Hazardous Materials, 2020, 405(34):124200.

DOI:10.1016/j.jhazmat.2020.124200      URL     [本文引用: 1]

/

京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com