Please wait a minute...
E-mail Alert Rss
 
物探与化探  2019, Vol. 43 Issue (3): 649-657    DOI: 10.11720/wtyht.2019.1421
  生态环境调查 本期目录 | 过刊浏览 | 高级检索 |
白银东大沟水体和底泥中重金属污染评价
张钊熔1, 段星星2, 夏明哲1()
1. 长安大学 地球科学与资源学院,陕西 西安 710054
2. 中国地质调查局 西安地质调查中心,陕西 西安 710054
Contamination situation and evaluation of heavy metal pollution in water and sediments of Dongdagou area, Baiyin
Zhao-Rong ZHANG1, Xing-Xing DUAN2, Ming-Zhe XIA1()
1. School of Earth Science and Resources, Chang’an University, Xi’an 710054, Shaanxi
2. Xi’an Institute of Geology and Mineral Resources, China Geological Survey, Xi’an 710054, China
全文: PDF(1136 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

为了给白银东大沟河道生态治理和底泥处理风险评价提供科学参考,分析了东大沟水体中Cu、Pb、Zn、Cd、As、Hg和底泥中Cr、Zn、Pb、Cu、Cd、Hg重金属的含量水平、分布特征及含量变化趋势,并采用内梅罗综合指数法和潜在生态风险指数法分别对水体和沉积底泥中的重金属污染累积程度、潜在风险进行评价。研究结果表明,东大沟水体中6种重金属平均含量在0.005 7~4.796 0 mg/L之间,其含量大小依次为Zn>Cu>Cd>Pb>As>Hg。随水流方向,水体中As含量表现为升高趋势,其余重金属含量则呈显著降低趋势。底泥中6种重金属平均含量在(61.6~5 999.3)×10 -6 之间,其含量大小依次为Zn>Pb>Cu>Cd>Cr>Hg。东大沟河段底泥中的重金属含量有起伏,但整体表现为随水流方向含量显著降低的趋势。参照相关评价标准,东大沟水体的主要重金属污染物为Cu、Pb、Zn、Cd,其单因子污染程度Cd>Pb>Zn>Cu,综合指数评价表明东大沟水体存在不同程度的污染;底泥主要重金属污染物为Cd、Hg、Pb、Cu,为复合污染,其生态危害风险程度Cd>Hg>Pb>Cu>Zn>Cr,潜在生态风险指数评价表明东大沟大部分河段底泥潜在生态风险指数为严重。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张钊熔
段星星
夏明哲
关键词 重金属污染水体底泥污染评价防控与治理东大沟    
Abstract

In order to provide scientific reference for the ecological control of the water and the risk assessment of sediment treatment, the authors analyzed the content level, the distribution characteristics and the content change trend of heavy metals such as Cu, Pb, Zn, Cd, As and Hg in water and Cr, Zn, Pb, Cu, Cd and Hg in sediments. The Nemerow Index and the Potential Ecological Risk Index were used to evaluate the accumulation degree and potential risk of heavy metal pollution in water bodies and sediments. The results show that the average content of six heavy metals in water is in the range of 0.005 7~4.796 0 mg/L, and the content exhibits the order of Zn>Cu>Cd>Pb>As>Hg. The content of As in the water body shows an increasing trend with water flow, while the other heavy metals content in water decreases obviously with the water flow. The average content of six heavy metals in the sediments is in the range of (61.6~5 999.3)×10 -6, with the order of Zn>Pb>Cu>Cd>Cr>Hg. The content of heavy metals in the sediments of the river sections has undulating changes, but the overall change trend is that the content of heavy metals in the sediments decreases obviously with flowing water. The main heavy metal pollutants in Dongdagou water are Cu, Pb, Zn and Cd, and the single factor pollution degree is in order of Cd>Pb>Zn>Cu. The Dongdagou water evaluated by the Nemerow Index shows that there are different degrees of polluted water in the river. The contaminations in sediments are heavy metal pollutants Cd, Hg, Pb and Cu, and the degree of ecological risk is in order of Cd>Hg>Pb>Cu>Zn>Cr. The evaluation of the sediments in Dongdagou by using the Potential Ecological Risk Index shows that the total potential ecological risk index of the sediments in the whole section of Dongdagou is serious.

Key wordsheavy metal pollution    water    sediments    pollution assessment    prevention and control    Dongdagou
收稿日期: 2018-11-14      出版日期: 2019-05-31
:  P632  
基金资助:长安大学中央高校基本科研业务费专项资金(300102279211)
通讯作者: 夏明哲
作者简介: 张钊熔(1994-),男,硕士研究生,地球化学专业。Email: 2235406061@qq.com
引用本文:   
张钊熔, 段星星, 夏明哲. 白银东大沟水体和底泥中重金属污染评价[J]. 物探与化探, 2019, 43(3): 649-657.
Zhao-Rong ZHANG, Xing-Xing DUAN, Ming-Zhe XIA. Contamination situation and evaluation of heavy metal pollution in water and sediments of Dongdagou area, Baiyin. Geophysical and Geochemical Exploration, 2019, 43(3): 649-657.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2019.1421      或      https://www.wutanyuhuatan.com/CN/Y2019/V43/I3/649
Fig.1  研究区范围及采样位置示意
等级划分 内梅罗污染指数 污染等级
PN≤0.7 清洁(安全)
0.7<PN≤1.0 尚清洁(警戒线)
1.0<PN≤2.0 轻度污染
2.0<PN≤3.0 中度污染
PN≥3.0 重度污染
Table 1  内梅罗污染指数分级标准
单因子污染物污染指数Cfi 潜在生态风险参数Eri 潜在生态风险指数RI
分级范围 等级 分级范围 等级 分级范围 等级
Cfi<1 低度 Eri<40 低度 RI<150 低度
1≤Cfi<3 中度 40≤Eri<80 中度 150≤RI<300 中度
3≤Cfi<6 重度 80≤Eri<160 较重 300≤RI<600 重度
Cfi≥6 严重 160≤Eri<320 重度 RI≥600 严重
Eri≥320 严重
Table 2  潜在生态污染指数评价分级
元素 最小值
/(mg·L-1)
最大值
/(mg·L-1)
平均值
/(mg·L-1)
标准差 变异系数 地表水环境质量Ⅳ级标准
/(mg·L-1)
Cu 0.005 30.63 4.796 10.55 2.20 1
Pb 0.0006 1.019 0.1759 0.28 1.61 0.05
Zn 0.07 77.35 13.34 25.25 1.89 2
Cd 0.0003 0.8633 0.2164 0.27 1.23 0.005
As 0.001 0.152 0.048 0.05 1.12 0.1
Hg 0.00008 0.00279 0.00057 0.0009 1.49 0.001
Table 3  水体中重金属含量统计特征
Fig.2  水体中重金属含量随水流方向的变化
样号 pH Cu Pb Zn Cd As Hg 综合污染指数
S1 4.67 25.96 2.39 30.42 117.24 0.07 86.6
S2 4.19 30.63 8.60 38.68 172.66 0.03 127.1
S3 6.78 0.03 0.05 1.24 21.44 0.01 15.5
S5 7.00 0.12 5.91 3.42 43.10 0.12 0.43 31.1
S6 7.35 0.35 20.38 3.22 94.42 0.52 2.79 68.3
S12 7.59 0.02 0.99 1.23 31.06 0.04 0.45 22.3
S14 7.65 0.02 0.76 0.96 24.84 0.19 0.17 17.8
S15 8.10 0.05 0.57 0.17 4.50 1.05 0.27 3.3
S16 8.09 0.08 1.14 0.19 4.11 1.25 0.58 3.0
S17 7.52 0.26 1.39 0.35 5.14 0.98 0.26 3.8
S18 7.29 0.02 0.05 0.04 0.84 1.52 0.10 1.1
S20 7.61 0.01 0.01 0.15 0.06 0.01 0.08 0.1
Table 4  东大沟水体中各重金属单项污染指数与综合指数
元素 最小值/10-6 最大值/10-6 平均值/10-6 标准差 变异系数 甘肃省土壤背景值[25]/10-6
Cr 43 80.1 61.6 10.6 0.2 70.2
Zn 425.3 13800 5999.3 4417.7 0.7 68.5
Pb 60.6 15900 4819.5 5387.4 1.1 18.8
Cu 39.4 8449.8 1795.6 2282.6 1.3 24.1
Cd 2.689 2908 502.816 832.31 1.7 0.116
Hg 0.03 476.6 65.07 129.15 2 0.02
Table 5  底泥中重金属含量统计特征
Fig.3  底泥中重金属含量随水流方向的变化
Fig.4  随水流方向底泥重金属单因子污染指数(Cfi)变化趋势
样号 采样位置 Cr Zn Pb Cu Cd Hg RI
D1 1.7 110.2 436.9 1408.3 6452.6 27.5 8437.2
D2 1.4 89.9 492.8 760.4 10713.4 53.5 12111.3
D3 1.4 47.5 398.0 486.9 5808.6 43.0 6785.4
D4 1.7 134.9 496.5 1753.1 9243.1 72.0 11701.3
D5 2.0 148.9 4228.7 399.8 167568.1 23830.0 196177.4
D6 2.0 169.3 3909.6 279.2 280603.4 17490.0 302453.6
D7 上游 1.6 201.5 3457.4 421.3 752069.0 5845.0 761995.8
D8 1.5 182.5 3430.9 358.9 634396.6 4833.0 643203.3
D9 1.8 146.0 2249.8 220.7 195284.5 2609.0 200511.8
D10 2.3 116.6 1379.4 170.7 140275.9 1356.5 143301.3
D11 1.8 60.7 783.4 107.0 40422.4 614.0 41989.3
D12 1.7 72.1 912.1 115.7 49991.4 741.0 51834.0
D14 2.3 58.8 606.3 117.1 35224.1 301.5 36310.1
D15 1.2 6.2 67.5 20.1 2661.2 116.5 2872.8
D16 1.3 7.1 75.7 23.8 2298.6 105.5 2512.0
D17 下游 1.9 6.7 62.4 25.2 2556.7 97.0 2749.9
D18 2.1 9.3 68.3 29.3 4428.9 427.0 4964.9
D20 2.0 8.4 16.1 8.2 695.4 1.6 731.6
Table 6  东大沟底泥潜在生态风险指数(Eri)
[1] 贾英, 方明, 吴友军 , 等. 上海河流沉积物重金属的污染特征与潜在生态风险[J]. 中国环境科学, 2013,33(1):147-153.
doi:
[1] Jia Y, Fang M, Wu Y J , et al. Pollution characteristics and potential ecological risk of heavy metals in river sediments of Shanghai[J]. China Environmental Science, 2013,33(1):147-153
[2] 于晓霞, 赵学强, 孙滨峰 , 等. 济南市小清河流域表层沉积物中重金属的空间分布、生态风险及源解析[J]. 西南师范大学学报:自然科学版, 2017,42(2):78-84.
[2] Yu X X, Zhao X Q, Sun B F , et al. Spatial distribution, ecological risk and source apportionment of heavy metals in sediments from Xiaoqinghe watershed of Jinan[J]. Journal of Southwest China Normal University, 2017,42(2):78-84.
[3] Fu J, Hu X, Tao X C , et al. Risk and toxicity assessments of heavy metals in sediments and fishes from The Yangtze River and Taihu Lake, China[J]. Chemosphere, 2013,93(9):1887-1895.
doi: 10.1016/j.chemosphere.2013.06.061
[4] Varol M . Assessment of heavy metal contamination in sediments of the Tigris River (Turkey)using pollution indices and multivariate statistical techniques[J]. Journal of Hazardous Materials, 2011,195(1):355-364.
doi: 10.1016/j.jhazmat.2011.08.051
[5] 黄淦 . 联用强化混凝与化学沉淀法去除水中重金属离子的研究[D]. 长沙:湖南大学, 2008.
[5] Huang G . Study on the removal of heavy metal lons in the water by combined intensifying coagulation and chemical precipitating[D]. Changsha:Hunan University, 2008.
[6] 黄飞, 王泽煌, 蔡昆争 , 等. 大宝山尾矿库区水体重金属污染特征及生态风险评价[J]. 环境科学研究, 2016,29(11):1701-1708.
[6] Huang F, Wang Z H, Cai K Z , et al. Pollution characteristics and potential ecological risks of heavy metals in water of Tailing zone in dabaoshan mine,Guangdong Province,China[J]. Research of Environmental Sciences, 2016,29(11) : 1701-1708.
[7] Naicker K, Cukrowska E, Mccarthy T S . Acid mine drainage arising from gold mining activity in Johannesburg, south Africa and Environs[J]. Environmental Pollution, 2003,122(1):29-40.
doi: 10.1016/S0269-7491(02)00281-6
[8] 张俊华, 卢翠玲, 刘玉寒 , 等. 开封城郊河道底泥重金属形态垂向分布特征及风险评价[J]. 农业环境科学学报, 2017,36(6):1192-1201.
[8] Zhang J H, Lu C L, Liu Y H , et al. Vertical distribution characteristics and risk assessment of heavy metals in core sediments from Kaifeng suburban rivers[J]. Journal of Agro-Environment Science, 2017,36(6):1192-1201.
[9] Hakima Z, Mohamed M, Aziza M , et al. Environmental and ecological risk of heavy metals in the marine sediment from Dakhla bay, Morocco[J]. Environmental Science and Pollution Research, 2017,24(9):7970-7981.
doi: 10.1007/s11356-017-8367-0
[10] 李春亮, 刘文辉 . 甘肃省白银市区土壤环境质量评价[J]. 物探与化探, 2012,36(6):1014-1019.
[10] Li C L, Liu W H . An assessment of the soil environmental quality in the downtown area of Baiyin city, Gansu Province[J]. Geophysical & Geochemical Exploration, 2012,36(6):1014-1019.
[11] 张素娣, 吴世洋 . 白银东大沟重金属污染现状及综合治理对策[J].世界有色金属, 2013(9):72-73.
[11] Zhang S Z, Wu S Y . Current status of heavy metal pollution in Dongdagou, Baiyin and comprehensive countermeasures[J]. World Nonferrous Metals, 2013(9):72-73.
[12] 李小虎, 汤中立, 初凤友 . 白银矿山水体和沉积物中重金属及其化学形态分布特征[J]. 地球与环境, 2008,36(3):218-224.
[12] Li X H, Tang Z L, Chu F Y . Analysis on speciation and transportation of heavy metals in water and sediment in Baiyin mine[J]. Earth & Environment, 2008,36(3):218-224.
[13] 张丹, 王鑫羽, 周富强 , 等. 白银市东大沟上游河道重金属污染现状及治理方法[J].现代农业科技, 2013(16):224-224.
[13] Zhang D, Wang X Y, Zhou F Q , et al. Status and treatment of heavy metal pollution in the upper reaches of Dongdagou, Baiyin city[J]. Modern Journal of Agricultural Science and Technology, 2013(16):224-224.
[14] 韩冰 . 白银市污水灌溉对农田环境及小麦产量质量的影响研究[J]. 甘肃农业科技, 2000(6):46-47.
[14] Han B . Study on the influence of sewage irrigation in Baiyin city on farmland environment and wheat yield and quality[J]. Gansu Agricultural Science and Technology, 2000(6):46-47.
[15] 刘白林 . 甘肃白银东大沟流域农田土壤重金属污染现状及其在土壤—作物—人体系统中的迁移转化规律[D]. 兰州:兰州大学, 2017.
[15] Liu B L . Heavy metal contamination in farmland soils and it transfer in the soil-crop-human system within the Dongdagou watershed, Baiyin, Gansu[D]. Lanzhou:Lanzhou University, 2017.
[16] 黄河上游白银段东大沟流域重金属污染整治与生态系统修复规划[M]. 北京: 北京大学出版社, 2012.
[16] Heavy metal pollution remediation and ecosystem restoration planning in the Dongdagou watershed of the upper section of the Yellow River [M]. Beijing: Peking University Press, 2012.
[17] SL187-96 水质采样技术规程[S].
[17] SL187-96 Technical regulation of water quality sampling[S].
[18] GB5084-92 农田灌溉水质标准[S].
[18] GB5084-92 Standards for irrigation water quality[S].
[19] 于国强, 李占斌, 张霞 , 等. 土壤水盐动态的BP神经网络模型及灰色关联分析[J]. 农业工程学报, 2009,25(11):74-79.
[19] Yu G Q, Li Z B, Zhang X , et al. Dynamic simulation of soil water-salt using BP neural net-work model and grey correlation analysis[J]. Transactions of the CSAE, 2009,25(11):74-79.
[20] 阎伍玖, 陈飞星 . 长江安徽马鞍山段水质评价研究[J]. 水土保持学报, 2000,14(4):104-107.
[20] Yan W J, Chen F X . Water quality assessment on Yangtze River near Maanshan Anhui Province[J]. Journal of Soil and Water Conservation, 2000,14(4):104-107.
[21] GB3838-2002 地表水环境质量标准[S].
[21] GB3838-2002 Environmental quality standards for surface water[S].
[22] Hakanson L . An ecology risk index for aquatic pollution control: A sedimentological approach[J]. Water Research, 1980,14:975-1001.
doi: 10.1016/0043-1354(80)90143-8
[23] 梅明, 文磊, 戚俊磊 , 等. 河流底泥重金属形态分析及污染评价方法综述[J]. 价值工程, 2016,35(9):8-11.
[23] Mei M, Wen L, Qi J L , et al. Review on methods of morphological analysis of heavy metals in river sediment and pollution Evaluation[J]. Value Engineering, 2016,35(9):8-11.
[24] 杨潇瀛, 张力文, 张凤君 , 等. 土壤重金属污染潜在风险评价[J]. 世界地质, 2011,30(1):103-109.
[24] Yang X Y, Zhang L W, Zhang F J , et al. Potential risk assessment of heavy metal pollution in soil[J]. Global Geology, 2011,30(1):103-109.
[25] 中国环境监测中心. 中国土壤背景值图集[M]. 北京: 中国环境科学出版社, 1990.
[25] China environmental monitoring center . China soil background value atlas [M]. Beijing: China Environmental Science Press, 1990.
[26] Stead-Dexter K, Ward N I . Mobility of heavy metals within freshwater sediments affected by motorway stormwater[J]. Science of the Total Environment, 2004,334:271-277.
[27] 倪鼎文 . 白银市东大沟流域重金属污染的防控治理对策研究[J]. 甘肃科技, 2015,31(24):6-8,11.
[27] Ni D W . Countermeasures for prevention and control of heavy metal pollution in Dongdagou Watershed of Baiyin City[J]. Gansu Science and Technology, 2015,31(24):6-8,11.
[1] 陈雪, 杨忠芳, 陈岳龙, 杨琼, 王磊, 韦雪姬. 广西中东部9县区农田土壤Se输入通量研究[J]. 物探与化探, 2020, 44(4): 820-829.
[2] 钟晓宇, 吴天生, 李杰, 郑国东, 卓小雄, 关东超, 王磊, 莫斌吉. 柳江流域沉积物重金属生态风险评价及来源分析[J]. 物探与化探, 2020, 44(1): 191-199.
[3] 王卫星, 曹淑萍, 李攻科, 高洪生, 张岩. 天津市州河水质及其底泥重金属污染评价[J]. 物探与化探, 2017, 41(2): 322-327.
[4] 王纳申, 张译丹, 黄家旋, 徐铠烔. 用微地震技术评价姬塬油田体积压裂的效果[J]. 物探与化探, 2017, 41(1): 165-170.
[5] 王惠艳, 陈亮, 胡树起, 孙忠军. 渤海湾西部海域表层沉积物重金属含量分布与评价[J]. 物探与化探, 2016, 40(3): 609-613.
[6] 赵西强, 王增辉, 王存龙, 代杰瑞, 刘华峰, 季顺乐. 济南市近地表大气降尘元素地球化学特征及污染评价[J]. 物探与化探, 2016, 40(1): 154-159.
[7] 张建新. 洞庭湖区土壤地球化学基准值与污染等级划分[J]. 物探与化探, 2014, 38(4): 793-799.
[8] 殷汉琴, 简中华, 魏迎春. 浙中某地土壤重金属来源解析及风险评价[J]. 物探与化探, 2014, 38(1): 135-141.
[9] 李春亮, 刘文辉. 甘肃省白银市区土壤环境质量评价[J]. 物探与化探, 2012, 36(6): 1014-1019.
[10] 聂兰仕, 王学求, 杨忠芳, 陈岳龙. 农业生态地球化学评价系统设计与实现[J]. 物探与化探, 2011, 35(2): 254-257.
[11] 赵传冬, 成杭新, 庄广民, 刘应汉, 王晓丽. 中国北方某城市近郊土壤中重金属污染现状及潜在危害[J]. 物探与化探, 2006, 30(4): 344-347,353.
[12] 周国华. 被污染土壤的植物修复研究[J]. 物探与化探, 2003, 27(6): 473-475,489.
[13] 沈珍瑶, 明木和. 利用电测井曲线的统计分析探讨咸水体运移特征[J]. 物探与化探, 1994, 18(2): 136-141.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com