Please wait a minute...
E-mail Alert Rss
 
物探与化探  2021, Vol. 45 Issue (1): 102-113    DOI: 10.11720/wtyht.2021.1158
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
多辐射场源半航空瞬变电磁法多分量响应特征分析
张莹莹()
新疆大学 地质与矿业工程学院,新疆 乌鲁木齐 830047
An analysis of full-component response of multi-source semi-airborne TEM method
ZHANG Ying-Ying()
College of Geological and Mining Engineering, Xinjiang University, Urumqi 830047, China
全文: PDF(3973 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

多辐射场源半航空瞬变电磁法是对电性源半航空瞬变电磁法的发展和补充,具有探测深度大、地形适应性强和工作效率高的优点。基于一维正演理论,本文对平行辐射场源、带角度多辐射场源和单个源模型在空中产生的三分量瞬变响应特征进行分析,结果表明:整体来说z分量瞬变响应曲线形态最为简单,多辐射场源情况下响应增强的特点最明显,最利于数据处理和解释;x分量瞬变响应形态最为复杂,在全场域经常表现出极性反转的变号现象,但晚期信号幅值总是增大;y分量瞬变响应受电流方向和接收点位置的影响最大,曲线形态和响应幅值变化均较为复杂。结合偏移距变化下响应衰减幅度,建议工作区域偏移距控制在辐射源长度的5~6倍内为宜。本文的研究结果可为实际勘查工作的野外施工布置及定性分析提供参考,同时获得了对该方法的初步认识。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张莹莹
关键词 多辐射场源电性源半航空瞬变电磁法三分量响应    
Abstract

Multi-source semi-airborne TEM is a supplement and development of electric source semi-airborne TEM. It has characteristics of great detective depth, strong adaptability in complex topography and high working efficiency. Based on the one-dimensional forward algorithm, the author analyzed the full-component response of parallel source and multi-source and single-source models. The results show that the curve of vertical component z is the simplest and it can be significantly strengthened with multi-source, which means this component is the most suitable one for data processing and interpretation. The most complex component is x. The curve always shows sign-changing in full field, but the magnitude can be strengthened in late stage. As the horizontal component y is most affected by current direction and receiver location, the curve shape and magnitude change are both complicated. Combined with the response characteristics of magnitude variation versus offset, it is suggested that the working area should be within the range of 5~6 times of source length. The research results in this paper can provide a reference for technical support to its application and obtain a preliminary understanding of the method.

Key wordsmulti-source    electric source    semi-airborne transient electromagnetic method    three-component response
收稿日期: 2020-04-01      修回日期: 2020-10-13      出版日期: 2021-02-20
ZTFLH:  P631  
基金资助:新疆维吾尔自治区自然科学基金项目(2017D01C064)
作者简介: 张莹莹(1989-),女,讲师,硕士生导师,主要从事瞬变电磁场的理论和应用方面的研究工作。Email:zhangyy19890423@163.com
引用本文:   
张莹莹. 多辐射场源半航空瞬变电磁法多分量响应特征分析[J]. 物探与化探, 2021, 45(1): 102-113.
ZHANG Ying-Ying. An analysis of full-component response of multi-source semi-airborne TEM method. Geophysical and Geochemical Exploration, 2021, 45(1): 102-113.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2021.1158      或      https://www.wutanyuhuatan.com/CN/Y2021/V45/I1/102
Fig.1  地表电偶极子层状模型(a)与多辐射场源剖分示意(b)
Fig.2  平行源及测线坐标俯视图
Fig.3  y=0 m测线平行源多分量响应对比
Fig.4  y=-300 m测线平行源多分量响应对比
Fig.5  y=-1000 m测线平行源多分量响应对比
Fig.6  带角度多源及测线坐标俯视图
Fig.7  y=0 m测线带角度多源多分量响应对比
Fig.8  y=-1 000 m测线带角度多源多分量响应对比
Fig.9  不同偏移距多分量响应对比
[1] Nabighian N M. Electromagnetic methods in applied geophysics-theory(volume 1)[M]. Tulsa OK: Society of exploration, 1988.
[2] Mogi T, Kusunoki K, Kaieda H, et al. Grounded electrical-source airborne transient electromagnetic (GREATEM) survey of mount Bandai, north-eastern Japan[J]. Exploration Geophysics, 2009,40:1-7.
doi: 10.1071/EG08115
[3] Allah S A, Ito H, Mogi T, et al. Three-dimensional resistivity characterization of a coastal area: Application of grounded electrical-source airborne transient electromagnetic (GREATEM) survey data from Kujukuri beach, Japan[J]. Journal of Applied Geophysics, 2013,99(3):1-11.
doi: 10.1016/j.jappgeo.2013.09.011
[4] Ito H, Mogi T, Jomori A, et al. Further investigation of underground resistivity structures in coastal areas using grounded-source airborne electromagnetics[J]. Earth Planets & Space, 2011,63(8):e9-e12.
[5] Ito H, Kaieda H, Mogi T, et al. Grounded electrical-source airborne transient electromagnetics (GREATEM) survey of Aso Volcano, Japan[J]. Exploration Geophysics, 2013,44:A-D.
[6] 嵇艳鞠, 王远, 徐江, 等. 无人飞艇长导线源时域地空电磁勘探系统及其应用[J]. 地球物理学报, 2013,56(11):3640-3650.
doi: 10.6038/cjg20131105
[6] Ji Y J, Wang Y, Xu J, et al. Development and application of the grounded long wire source airborne electromagnetic exploration system based on unmanned airship[J]. Chinese Journal of Geophysics, 2013,56(11):3640-3650.
[7] 李肃义, 林君, 阳贵红, 等. 电性源时域地空电磁数据小波去噪方法研究[J]. 地球物理学报, 2013,56(9):3145-3152.
doi: 10.6038/cjg20130927
[7] Li S Y, Lin J, Yang G H, et al. Ground-airborne electromagnetic signals de-noising using a combined wavelet transform algorithm[J]. Chinese Journal of Geophysics, 2013,56(9):3145-3152.
[8] 方涛, 张建军, 付成群, 等. 无人机地空瞬变电磁系统在冶山地下巷道探测中的应用[J]. 地球物理学进展, 2015,30(5):2366-2372.
[8] Fang T, Zhang J J, Fu C Q, et al. Using ground-airborne transient electromagnetic system on unmanned aerial vehicle detecting Yeshan underground tunnels[J]. Progress in Geophysics, 2015,30(5):2366-2372.
[9] 刘金鹏. 电性源地空瞬变电磁法在采空区探测中的应用[D]. 西安:长安大学, 2018.
[9] Liu J P. The application of ground-airborne transient electromagnetic method with electric source in the gobs detection[D]. Xi’an: Chang’an University, 2018.
[10] 吴启龙. 半航空瞬变电磁视电阻率成像及在复杂地形区域隧道勘察中的应用[D]. 济南:山东大学, 2019.
[10] Wu Q L. Semi-Airborne transient electromagnetic apparent resistivity imaging and its application in tunnel survey in complex terrain areas[D]. Jinan: Shandong University, 2019.
[11] 刘天佑. 地球物理勘探概论[M]. 北京: 地质出版社, 2007.
[11] Liu T Y. Introduction to geophysical exploration[M]. Beijing: Geological Publishing House, 2007.
[12] Kaufman A A, Keller G V. 频率域和时间域电磁测深[M].王建谋,译. 北京: 地质出版社, 1987.
[12] Kaufman A A, Keller G V. Electromagnetic sounding in frequency and time domain[M].Wang J M. Beijing: Geological Publishing House, 1987.
[13] Um E S. On the physics of galvanic source electromagnetic geophysical methods for terrestrial and marine exploration[D]. Madison:University of Wisconsin-Madison, 2005.
[14] Mogi T, Tanaka Y, Kusunoki K, et al. Development of grounded electrical source airborne EM(GREATEM)[J]. Exploration Geophysics, 1998,29:61-64.
doi: 10.1071/EG998061
[15] 刘富波, 李巨涛, 刘丽华, 等. 无人机平台半航空瞬变电磁勘探系统及其应用[J]. 地球物理学进展, 2017,32(5):2222-2229.
[15] Liu F B, Li J T, Liu L H, et al. Development and application of a new semi-airborne transient electromagnetic system with UAV platform[J]. Progress in Geophysics, 2017,32(5):2222-2229.
[16] 吴寿勇. 半航空电磁勘查系统数据采集关键技术研究[D]. 成都:成都理工大学, 2014.
[16] Wu S Y. Research of data acquisition key technologies of half aviation electromagnetic exploration system[D]. Chengdu:Chengdu University of Technology, 2014.
[17] 李琳琳. 半航空瞬变电磁发射机关键技术研究[D]. 成都:成都理工大学, 2015.
[17] Li L L. Study on the key technology of the GREATEM transmitter[D]. Chengdu:Chengdu University of Technology, 2015.
[18] 王金梅. 无人机半航空瞬变电磁信号接收技术研究[D]. 成都:成都理工大学, 2018.
[18] Wang J M. The research on receiving technology of semi-airborne transient electromagnetic receiver[D]. Chengdu: Chengdu University of Technology, 2018.
[19] 张莹莹, 李貅. 地空瞬变电磁法研究进展[J]. 地球物理学进展, 2017,32(4):1735-1741.
[19] Zhang Y Y, Li X. Research progress on ground-airborne transient electromagnetic method[J]. Progress in Geophysics, 2017,32(4):1735-1741.
[20] 阳贵红. 时域电性源地-空电磁探测数据预处理研究[D]. 长春:吉林大学, 2012.
[20] Yang G H. Data preprocessing research on electrical-source of time domain ground-airborne electromagnetic[D]. Changchun: Jilin University, 2012.
[21] 张莹莹. 水平电偶源地空系统瞬变电磁法多分量解释技术及全域视电阻率定义研究[D]. 西安:长安大学, 2013.
[21] Zhang Y Y. Study on multi-component interpretation and full field apparent resistivity definition of semi-airborne transient electromagnetic method with electrical dipole on the surface[D]. Xi’an: Chang’an University, 2013.
[22] 张莹莹, 李貅, 姚伟华, 等. 多辐射场源地空瞬变电磁法多分量全域视电阻率定义[J]. 地球物理学报, 2015,58(8):2745-2758.
[22] Zhang Y Y, Li X, Yao W H, et al. Multi-component full field apparent resistivity definition of multi-source ground-airborne transient electromagnetic method with galvanic sources[J]. Chinese Journal of Geophysics, 2015,58(8):2745-2758.
[23] 宿传玺. 浅层岩溶半航空瞬变电磁响应规律与试验研究[D]. 济南:山东大学, 2018.
[23] Su C X. Responses and experimental studies of semi-airborne transient electromagnetic for shallow karst[D]. Jinan: Shandong University, 2018.
[24] 曹凤凤. 地空瞬变电磁起伏地形效应的特征研究[D]. 西安:长安大学, 2019.
[24] Cao F F. Study on characteristics of rugged terrain effect of ground-airborne transient electromagnetic[D]. Xi’an: Chang’an University, 2019.
[25] 李貅, 张莹莹, 卢绪山, 等. 电性源瞬变电磁地空逆合成孔径成像[J]. 地球物理学报, 2015,58(1):277-288.
doi: 10.6038/cjg20150125
[25] Li X, Zhang Y Y, Lu X S, et al. Inverse synthetic aperture imaging of ground-airborne transient electromagnetic method with a galvanic source[J]. Chinese Journal of Geophysics, 2015,58(1):277-288.
[26] 张莹莹. 地空瞬变电磁逆合成孔径成像方法研究[D]. 西安:长安大学, 2016.
[26] Zhang Y Y. Study on inverse synthetic aperture imaging of ground-airborne transient electromagnetic method[D]. Xi’an: Chang’an University, 2016.
[27] 张莹莹, 李貅, 李佳, 等. 多辐射场源地空瞬变电磁法快速成像方法研究[J]. 地球物理学进展, 2016,31(2):869-876.
[27] Zhang Y Y, Li X, Li J, et al. Fast imaging technique of multi-source ground-airborne transient electromagnetic method[J]. Progress in Geophysics, 2016,31(2):869-876.
[28] 吕仁斌. 半航空瞬变电磁数据处理及快速成像方法研究[D]. 成都:成都理工大学, 2017.
[28] Lyu R B. Research on rapid simulation and data processing of semi-aerial transient electromagnetic[D]. Chengdu: Chengdu University of Technology, 2017.
[29] 嵇艳鞠, 徐江, 吴琼, 等. 基于神经网络电性源半航空视电阻率反演研究[J]. 电波科学学报, 2014,29(5):973-980.
[29] Ji Y J, Xu J, Wu Q, et al. Apparent resistivity inversion of electrical source semi-airborne electromagnetic data based on neutral network[J]. Chinese Journal of Radio Science, 2014,29(5):973-980.
[30] 徐江. 基于人工神经网络电性源半航空视电阻率反演方法研究[D]. 长春:吉林大学, 2014.
[30] Xu J. Apparent resisitivity inversion research of electrical-source of semi-airborne transient electromagnetic based on neutral network method[D]. Changchun: Jilin University, 2014.
[31] 许洋. 半航空一维正反演研究[D]. 成都:成都理工大学, 2014.
[31] Xu Y. Study about 1D forward and inversion of SATEM[D]. Chengdu: Chengdu University of Technology, 2014.
[32] 李佳. 多辐射场源地空瞬变电磁一维反演方法研究[D]. 西安:长安大学, 2017.
[32] Li J. Study on 1D inversion of multi-source grounded-airborne transient electromagnetic method[D]. Xi’an: Chang’an University, 2017.
[33] 赵涵, 景旭, 李貅, 等. 多辐射场源地空瞬变电磁一维反演方法研究[J]. 物探与化探, 2019,43(1):132-142.
[33] Zhao H, Jing X, Li X, et al. A study of 1D inversion of multi-source ground-airborne transient electromagnetic method[J]. Geophysical and Geochemical Exploration, 2019,43(1):132-142.
[34] 张澎, 余小东, 许洋, 等. 半航空时间域电磁数据一维自适应正则化反演物[J]. 物探化探计算技术, 2017,39(1):1-8.
[34] Zhang P, Yu X D, Xu Y, et al. An adaptive regularized inversion of 1D semi-airborne time-domain electromagnetic data[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2017,39(1):1-8.
[35] Abdallah S, Mogi T, Kim H J. Three-dimensional inversion of GREATEM data:Application to GREATEM survey data from Kujukuri Beach,Japan[J]. Applied Earth Observations and Remote Sensing, 2017,99:1-7.
[36] Guptasarma D, Singh B. New digital linear filters for Hankel J0 and J1 transforms[J]. Geophysical Prospecting, 1997,45:745-762.
doi: 10.1046/j.1365-2478.1997.500292.x
[37] 王华军. 正余弦变换的数值滤波算法[J]. 工程地球物理学报, 2004,1(4):329-335.
[37] Wang H J. Digital filter algorithm of the sine and cosine transform[J]. Chinese Journal of Engineering Geophysics, 2004,1(4):329-335.
[38] Mogi T, Tanaka Y, Kusunoki K, et al. Development of grounded electrical source airborne transient EM (GREATEM)[J]. Exploration Geophysics, 1998,29:61-64.
doi: 10.1071/EG998061
[1] 周钟航, 张莹莹. 山峰对电性源地面瞬变电磁响应的影响及校正方法[J]. 物探与化探, 2023, 47(5): 1236-1249.
[2] 王仕兴, 何可, 尹小康, 魏栋华, 赵思为, 郭明. 半航空瞬变电磁一维聚焦反演研究[J]. 物探与化探, 2023, 47(2): 410-419.
[3] 张莹莹. 带约束的多辐射场源半航空瞬变电磁一维自适应正则化反演方法[J]. 物探与化探, 2022, 46(2): 424-432.
[4] 张莹莹. 电性源瞬变电磁法综述[J]. 物探与化探, 2021, 45(4): 809-823.
[5] 胡佳豪, 李貅, 刘航, 胡伟明, 岳鑫. TBM机施工隧道瞬变电磁超前探测研究[J]. 物探与化探, 2020, 44(5): 1183-1189.
[6] 陈大磊, 陈卫营, 郭朋, 王润生, 王洪军, 张超, 马启合, 贺春燕. SOTEM法在城镇强干扰环境下的应用——以坊子煤矿采空区为例[J]. 物探与化探, 2020, 44(5): 1226-1232.
[7] 赵涵, 景旭, 李貅, 刘文韬. 多辐射场源地空瞬变电磁一维反演方法研究[J]. 物探与化探, 2019, 43(1): 132-142.
[8] 李荡, 郑采君, 林品荣, 王珺璐, 李建华, 李勇. 基于电容补偿技术的电性源CSAMT高频供电研究[J]. 物探与化探, 2018, 42(6): 1253-1258.
[9] 闫国翔, 尹秉喜, 杨勇. 电性源瞬变电磁全区视电阻率定义[J]. 物探与化探, 2017, 41(5): 933-938.
[10] 薛俊杰, 陈卫营, 王贺元. 电性源短偏移瞬变电磁探测深度分析与应用[J]. 物探与化探, 2017, 41(2): 381-384.
[11] 卢云飞, 薛国强, 邱卫忠, 周楠楠, 侯东洋. SOTEM研究及其在煤田采空区中的应用[J]. 物探与化探, 2017, 41(2): 354-359.
[12] 武军杰, 李貅, 智庆全, 邓晓红, 张杰, 王兴春, 杨毅. 电性源地-井瞬变电磁异常场响应特征初步分析[J]. 物探与化探, 2017, 41(1): 129-135.
[13] 侯东洋, 薛国强, 陈卫营. SOTEM与CSAMT对低阻层的分辨能力比较[J]. 物探与化探, 2016, 40(1): 185-189.
[14] 陈卫营, 薛国强. 电性源瞬变电磁对薄层的探测能力[J]. 物探与化探, 2015, 39(4): 775-779.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com