Please wait a minute...
E-mail Alert Rss
 
物探与化探  2017, Vol. 41 Issue (2): 354-359    DOI: 10.11720/wtyht.2017.2.25
  环境与工程地球物理专栏 本期目录 | 过刊浏览 | 高级检索 |
SOTEM研究及其在煤田采空区中的应用
卢云飞1, 薛国强1, 2, 邱卫忠3, 周楠楠1, 侯东洋1
1.中国科学院 地质与地球物理研究所 矿产资源研究重点实验室,北京 100029;
2.国土资源部 煤炭资源勘查与综合利用重点实验室, 陕西 西安 710054;
3.山西省煤炭地质115勘查院,山西 大同 037003
The research on SOTEM and its application in mined-out area of coal mine
LU Yun-Fei1, XUE Guo-Qiang1, 2, QIU Wei-Zhong3, ZHOU Nan-Nan1, HOU Dong-Yang1
1. Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029,China;
2. Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Land and Resources, Xi'an 710054, China;
3. Shanxi Coal Geology No. 115 Exploration Institute, Datong 037003, China
全文: PDF(1638 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 电性源短偏移瞬变电磁法(SOTEM)具有信号强、对低阻异常体分辨率高、探测深度较大,受地形和地下构造影响较小等特点,因而适合于低阻体及精细构造的探测,同时由于SOTEM工作方法简便,探测工具灵活易于操作,所以非常适合地形复杂、施工艰难的工区。本研究通过对电性源短偏移距瞬变电磁法进行理论分析,对不同地电模型响应之间的相对误差及其随异常电阻率的变化特征进行了分析,探讨了SOTEM的电性异常分辨能力;求解得到了SOTEM探测深度的理论判断公式;研究计算及正演模拟了不同时刻层状地电模型瞬变电磁响应的空间分布特征来对最佳观测区域进行分析,得出近场区观测的优越性;最后,以SOTEM在山西大同某煤矿采空区探测中的应用实例来说明该方法的有效性,根据对比,探测结果与钻井信息很好吻合。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract:The electrical source short-offset transient electromagnetic method (SOTEM) has characteristics of strong signal, high resolution, large investigation depth, and less influence by topography and underground structure. It is therefore suitable for the detection of low resistivity body and fine structure. In addition, it is easily arranged and the receiving instrument is light and easy to operate, so it is very suitable for difficult field area with complex terrain. In this paper, the SOTEM method is analyzed theoretically, and the spatial distribution characteristics of the transient electromagnetic response of the layered geoelectric model in different time spans are calculated and simulated. The result shows the superiority of the near field observation. Based on the analysis of the relative error of response between different geoelectric models and the variation characteristics with the abnormal resistivity, the authors investigated the capability of SOTEM for discriminating electrical anomalies. In this paper, the authors have obtained the theoretical judgment formula of SOTEM detection depth, and put forward the commonly used formula of probing depth. At the end of this paper, the application of SOTEM to the detection of the gob in a coal mine in Datong of Shanxi Province is given to illustrate the effectiveness of the method. According to the comparison, the detection results coincide with the drilling information.
收稿日期: 2016-11-10      出版日期: 2017-04-10
:  P631  
基金资助:国家重大科研装备研制项目(ZDYZ2012-1-05); 国家自然科学基金项目(41474095); 中国科学院矿产资源研究重点实验室开放课题; 国土资源部煤炭资源勘查与综合利用重点实验室开放课题
作者简介: 卢云飞(1990-),男,硕士研究生,研究方向为瞬变电磁法数值模拟。Email:ucasluyunfei@163.com
引用本文:   
卢云飞, 薛国强, 邱卫忠, 周楠楠, 侯东洋. SOTEM研究及其在煤田采空区中的应用[J]. 物探与化探, 2017, 41(2): 354-359.
LU Yun-Fei, XUE Guo-Qiang, QIU Wei-Zhong, ZHOU Nan-Nan, HOU Dong-Yang. The research on SOTEM and its application in mined-out area of coal mine. Geophysical and Geochemical Exploration, 2017, 41(2): 354-359.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2017.2.25      或      https://www.wutanyuhuatan.com/CN/Y2017/V41/I2/354
[1] 薛国强,陈卫营,周楠楠,等.接地源瞬变电磁短偏移深部探测技术[J].地球物理学报,2013,56(1):255-261.
[2] Jackson D B,Keller G V.An electromagnetic sounding survey of the summit of Kilauea Volcano,Hawaii[J].Journal of Geophysical Research,1972,77(26):4957-4965.
[3] Skokan C K.A time-domain electromagnetic survey of the East Rift Zone,Kilauea Volcano,Hawaii[D].Golden Colo:Colorado School of Mines,1974.
[4] Keller G A,Rapolla A.Electrical prospecting methods in volcanic and geothermal environments[C]//Civetta L,Gasparini P,Luongo G,et al.Physical Volcanology.Amsterdam:Elsevier,1975:133-166.
[5] Sternberg B K.Electrical resistivity structure of the crust in the southern extension of the Canadian shield-layered earth models[J].Journal of Geophysical Research:Solid Earth,1979,84(B1):212-228.
[6] Lienert B R.Crustal electrical conductivities along the eastern flank of the Sierra Nevadas[J].Geophysics,1979,44(11):1830-1845.
[7] Kauahikaua J.Electromagnetic fields about a horizontal electric wire source of arbitrary Length[J].Geophysics,1978,43(5):1019-1022.
[8] Harthill N.Time-domain electromagnetic sounding[J].IEEE Transactions on Geoscience Electronics,1976,14(4):256-260.
[9] Hordt A,Muller M.Understanding LOTEM data from mountainous terrain[J].Geophysics,2000,65(4):1113-1123.
[10] Strack K M.Exploration with deep transient electromagnetics[M].New York:Elsevier,1992.
[11] 严良俊,胡文宝,陈清礼,等.长偏移距瞬变电磁测深法在碳酸盐岩覆盖区落实局部构造的应用效果[J].地震地质,2001,23(2):271-276.
[12] 廖忠,李文尧.线源TEM在腾冲热水塘寻找地热的应用效果[J].工程勘察,2002(1):67-69.
[13] Rabinovich B I.Comparative evaluation of sounding by transient fields in the far and near zones[J].Geologiya i Geofizika,1978,11:148-152.
[14] Goldman M M,Grekova L B,Morozova G M,et al.Album of two-layer sounding curves for the transient horizontal magnetic field in the near zone[J].Akad Nauk SSSR,1976(9).
[15] Antonov Y N,Manshtein A K.Development of equipment for depth sounding with transient field in the near zone (ZCB)[C]//Theory and Use of electromagnetic Fields in Exploration Geophysics.Novosibirsk:Akademiia Nauk SSSR,1979:18-26.
[16] Azad J.Mapping stratigraphic traps with electrical transients[J].Bulletin of Canadian Petroleum Geology,1977,25(5):995-1036.
[17] Gonzalez J M S.Test of time-domain electromagnetic exploration for oil and gas[D].Colorado:Colorado School of Mines,1979.
[18] Cuevas N H, Alumbaugh D. Near source response of a resistive layer to vertical electric dipole excitation[C]//SEG Houston 2009 International Expanded Annual Meeting, 2009: 794-798.
[19] Ziolkowski A M.Short-offset transient electromagnetic geophysical surveying[P].US,EP2219050,2010-08-18.
[20] Cuevas N H,Alumbaugh D.Near-source response of a resistive layer to a vertical or horizontal electric dipole excitation[J].Geophysics,2011,76(6):F353-F371.
[21] Um E S,Alumbaugh D L,Harris J M,et al.Numerical modeling analysis of short-offset electric-field measurements with a vertical electric dipole source in complex offshore environments[J].Geophysics,2012,77(5):E329-E341.
[22] Xue G Q,Gelius L J,Sakyi P A,et al.Discovery of a hidden BIF deposit in Anhui province,China by integrated geological and geophysical investigations[J].Ore Geology Reviews,2014,63:470-477.
[23] Zhou N N,Xue G Q,Chen W Y,et al.Large-depth hydrogeological detection in the North China-type coalfield through short-offset grounded-wire TEM[J].Environmental Earth Sciences,2015,74(3):2393-2404.
[24] Chen W Y,Xue G Q,Muhammad K H,et al.Application of short-offset TEM (SOTEM) technique in mapping water-enriched zones of coal stratum,an example from east China[J].Pure and Applied Geophysics,2015,172(6):1643-1651.
[25] Kaufman A A,Keller G V.Frequency and transient soundings[M].Amsterdam:Elsevier Science Publishers,1983.
[26] Spies B R.Depth of investigation in electromagnetic sounding methods[J].Geophysics,1989,54(7):872-888.
[27] 朴化荣,殷长春.频率测深水平磁场的正演计算及应用[J].物探化探计算技术,1988,11(3):204-213.
[28] Zhou N N,Xue G Q.The ratio apparent resistivity definition of rectangular-loop TEM[J].Journal of Applied Geophysics,2014,103:152-160.
[1] 陈秀娟, 刘之的, 刘宇羲, 柴慧强, 王勇. 致密储层孔隙结构研究综述[J]. 物探与化探, 2022, 46(1): 22-31.
[2] 肖关华, 张伟, 陈恒春, 卓武, 王艳君, 任丽莹. 浅层地震技术在济南地下空间探测中的应用[J]. 物探与化探, 2022, 46(1): 96-103.
[3] 石磊, 管耀, 冯进, 高慧, 邱欣卫, 阙晓铭. 基于多级次流动单元的砂砾岩储层分类渗透率评价方法——以陆丰油田古近系文昌组W53油藏为例[J]. 物探与化探, 2022, 46(1): 78-86.
[4] 陈大磊, 王润生, 贺春艳, 王珣, 尹召凯, 于嘉宾. 综合地球物理探测在深部空间结构中的应用——以胶东金矿集区为例[J]. 物探与化探, 2022, 46(1): 70-77.
[5] 周能, 邓可晴, 庄文英. 基于线性放电法的多道脉冲幅度分析器设计[J]. 物探与化探, 2022, 46(1): 221-228.
[6] 吴燕民, 彭正辉, 元勇虎, 朱今祥, 刘闯, 葛薇, 凌国平. 一种基于差分接收的电磁感应阵列探头的设计与实现[J]. 物探与化探, 2022, 46(1): 214-220.
[7] 王猛, 刘媛媛, 王大勇, 董根旺, 田亮, 黄金辉, 林曼曼. 无人机航磁测量在荒漠戈壁地区的应用效果分析[J]. 物探与化探, 2022, 46(1): 206-213.
[8] 张化鹏, 钱卫, 刘瑾, 武立林, 宋泽卓. 基于伪随机信号的磁电法渗漏模型试验[J]. 物探与化探, 2022, 46(1): 198-205.
[9] 张建智, 胡富杭, 刘海啸, 邢国章. 煤矿老窑采空区地—井TEM响应特征[J]. 物探与化探, 2022, 46(1): 191-197.
[10] 张宇哲, 孟麟, 王智. 基于Gmsh的起伏地形下井—地直流电法正演模拟[J]. 物探与化探, 2022, 46(1): 182-190.
[11] 马德志, 王炜, 金明霞, 王海昆, 张明强. 海上地震勘探斜缆采集中鬼波产生机理及压制效果分析[J]. 物探与化探, 2022, 46(1): 175-181.
[12] 张洁. 基于拉伸率的3DVSP道集切除技术及应用[J]. 物探与化探, 2022, 46(1): 169-174.
[13] 丁骁, 莫思特, 李碧雄, 黄华. 混凝土内部裂缝对电磁波传输特性参数的影响[J]. 物探与化探, 2022, 46(1): 160-168.
[14] 崔瑞康, 孙建孟, 刘行军, 文晓峰. 低阻页岩电阻率主控因素研究[J]. 物探与化探, 2022, 46(1): 150-159.
[15] 陈亮, 付立恒, 蔡冻, 李凡, 李振宇, 鲁恺. 基于模拟退火法的磁共振测深多源谐波噪声压制方法[J]. 物探与化探, 2022, 46(1): 141-149.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com