Please wait a minute...
E-mail Alert Rss
 
物探与化探  2020, Vol. 44 Issue (5): 1226-1232    DOI: 10.11720/wtyht.2020.1579
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
SOTEM法在城镇强干扰环境下的应用——以坊子煤矿采空区为例
陈大磊1,2(), 陈卫营3, 郭朋1,2, 王润生1,2, 王洪军1,2, 张超1,2, 马启合4, 贺春燕1,2
1.山东省物化探勘查院, 济南 250013
2.山东省地质勘查工程技术研究中心,山东 济南 250013
3.中国科学院 地质与地球物理研究所,北京 100029
4.中国冶金地质总局 山东正元地质勘查院,山东 潍坊 261057
The application of SOTEM method to populated areas: A case study of Fangzi coal mine goaf
CHEN Da-Lei1,2(), CHEN Wei-Ying3, GUO Peng1,2, WANG Run-Sheng1,2, WANG Hong-Jun1,2, ZHANG Chao1,2, MA Qi-He4, HE Chun-Yan1,2
1.Shandong Geophysical and Geochemical Exploration Institute, Jinan 250013, China
2.Shandong Geological Exploration Engineering Technology Research Center,Jinan 250013,China
3.Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
4.Shandong Zhengyuan Geological Exploration Institute, China Metallurgical Geology Bureau, Weifang 261057, China
全文: PDF(3367 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

瞬变电磁法(TEM)是煤田采空区探测的主要手段之一。然而,当采空区埋藏较深或测区内建筑物密集时,传统回线源装置往往难以满足探测需求。电性源短偏移距瞬变电磁法(SOTEM)由于采取近源观测,具有信号幅值高、信噪比强、探测深度大、施工方便高效等优点,具有更好的适用性。潍坊市坊子煤矿的采空区埋藏深度约500 m,且大部分区域落于房屋密集分布的村庄内,为有效探测蒋家村下采空区的分布及影响范围,采用SOTEM法开展探测工作。在村庄外围布设发射源,利用轻便接收装置在村内接收信号,克服了建筑物障碍问题。利用小波去噪及五点圆滑技术对强干扰数据进行滤波处理,然后利用OCCAM法对数据进行一维反演。结果表明,本次SOTEM探测深度达到800 m,成功圈定出低阻采空区的分布范围,并得到钻孔验证。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈大磊
陈卫营
郭朋
王润生
王洪军
张超
马启合
贺春燕
关键词 瞬变电磁法电性源短偏移距采空区强干扰    
Abstract

Transient electromagnetic method (TEM) is the main tool for detecting mined-out area. However, when the goaf is buried deep or there are many buildings in the survey area, it is often difficult for the traditional loop source device to meet the detection needs. SOTEM has such advantages as high signal amplitude, strong signal-to-noise ratio, large detection depth, and convenient and efficient construction. The buried depth of the goaf in the Fangzi coal mine in Weifang City is about 500 meters, and most of the area is in villages where houses are densely distributed. In order to effectively detect the distribution and influence range of the goaf under Jiangjia Village, the authors adopted SOTEM method to carry out the detection work. The problem of building obstacle was overcome by placing transmitting source outside the village and using portable receiving device to receive signal in the village. Wavelet denoising and five-point smoothing technology were used to filter the strong interference data, and then OCCAM method was used to carry out one-dimensional inversion of the data. The results show that the depth of SOTEM detection reached 800 meters, and the distribution range of low-resistance goaf was successfully delineated, which was later verified by drilling.

Key wordstransient electromagnetic method    electric source    short-offset    mined-out area    strong disturbance
收稿日期: 2019-12-13      出版日期: 2020-10-26
:  P631  
基金资助:山东省重大科技创新工程项目“深部探测综合地球物理技术”(2018CXGC1601);山东省地勘局2020年度局控项目(202027)
作者简介: 陈大磊(1988-),男,山东潍坊人,工程师,主要从事深部地球物理探测应用研究工作。Email: cdl2602080210@sina.com
引用本文:   
陈大磊, 陈卫营, 郭朋, 王润生, 王洪军, 张超, 马启合, 贺春燕. SOTEM法在城镇强干扰环境下的应用——以坊子煤矿采空区为例[J]. 物探与化探, 2020, 44(5): 1226-1232.
CHEN Da-Lei, CHEN Wei-Ying, GUO Peng, WANG Run-Sheng, WANG Hong-Jun, ZHANG Chao, MA Qi-He, HE Chun-Yan. The application of SOTEM method to populated areas: A case study of Fangzi coal mine goaf. Geophysical and Geochemical Exploration, 2020, 44(5): 1226-1232.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2020.1579      或      https://www.wutanyuhuatan.com/CN/Y2020/V44/I5/1226
Fig.1  SOTEM法装置示意
地层 岩性 厚度
第四系(Q) 褐色、棕黄色,粉沙土及沙质黏土,底部夹有钙结石及凝灰岩和片麻岩的砾石 0~19.5 m,平均7.92 m
下白垩统青山组
(K1q)
上部:凝灰质砂岩,灰绿色凝灰岩,块状构造;片麻岩、石灰岩、石英岩、馒头页岩
下部:红色砂砾岩互层
20~931 m,平均550.00 m
8~203.8 m,平均61.66 m
下侏罗统坊子组
(J1f)
本区唯一含煤地层,岩性为粗砂岩、中砂岩、细砂岩、粉砂岩,细砂岩粉砂岩互层,
煤层及岩浆岩,纯属陆相沉积,含上、中、下三层主要可采煤层
0~270.91 m,平均159 m
太古宇泰山群
(Ar3t)
花岗片麻岩为主,次为绿泥石片岩及黑云母花岗片麻岩 不详
Table 1  测区地层分布
Fig.2  蒋家测区测点及发射源布设
发射源编号 长度/m 控制测线 收发距/m
Tx1 644 JH1、JH2、JH3 420~646
Tx2 651 JH4、JH5、JH6、JH7 312~660
Tx3 428 JS1、JS2、JS3、JS4 250~595
Tx4 765 JS5、JS6、JS7、JS8 637~985
Table 2  发射源长度及控制测线信息
Fig.3  实测感应电压衰减信号
Fig.4  原始数据去噪效果
Fig.5  测点JH7-180和JS5-500反演结果
Fig.6  JS5线反演电阻率断面
Fig.7  不同深度的电阻率等值线平面
[1] 杨建军, 吴汉宁, 冯兵, 等. 煤矿采空区探测效果研究[J]. 煤田地质与勘探, 2006,34(1):67-70.
[1] Yang J J, Wu H N, Feng B, et al. Research on prospecting effect for gob area of coal mines[J]. Coal Geology & Exploration, 2006,34(1):67-70.
[2] 刘飞, 胡斌, 宋丹, 等. 苏家里新村地面及建筑物裂缝成因分析[J]. 煤田地质与勘探, 2015,43(6):87-91.
[2] Liu F, Hu B, Song D, et al. The genetic analysis of cracks of the ground and buildings in New Sujiali Village[J]. Coal Geology & Exploration, 2015,43(6):87-91.
[3] 梁爽, 李志民. 瞬变电磁法在阳泉二矿探测积水采空区效果分析[J]. 煤田地质与勘探, 2003,31(4):49-51.
[3] Liang S, Li Z M. Analysis of the effect by using TEM detecting water filled gob area in No. 2 Mine, Yangquan Mine Group[J]. Coal Geology & Exploration, 2003,31(4):49-51.
[4] 解海军, 孟小红, 王信文, 等. 煤矿积水采空区瞬变电磁法探测的附加效应[J]. 煤田地质与勘探, 2009,37(2):71-74.
[4] Xie H J, Meng X H, Wang X W, et al. The additional effect of TEM detection and its application in coal mined-out area with accumulated water[J]. Coal Geology & Exploration, 2009,37(2):71-74.
[5] 薛国强, 于景邨. 瞬变电磁法在煤炭领域的研究与应用新进展[J]. 地球物理学进展, 2017,32(1):319-326.
[5] Xue G Q, Yu J C. New development of TEM research and application in coal mine exploration[J]. Progress in Geophysics, 2017,32(1):319-326.
[6] 陈卫营, 薛国强. 瞬变电磁法多装置探测技术在煤矿采空区调查中的应用[J]. 地球物理学进展, 2013,28(5):2709-2717.
doi: 10.6038/pg20130554
[6] Chen W Y, Xue G Q. Application on coal-mine voids detection with multi-device TEM technology[J]. Progress in Geophysics, 2013,28(5):2709-2717.
doi: 10.6038/pg20130554
[7] 闫述, 石显新, 陈明生. 华北型煤田水文地质电法勘探的深度问题[J]. 煤炭科学技术, 2006,34(12):5-8.
[7] Yan S, Shi X X, Chen M S. Issues on probing depth of hydrogeological electromagnetic method for exploration of North China coal field[J]. Coal Science and Technology, 2006,34(12):5-8.
[8] 薛国强, 陈卫营, 周楠楠, 等. 接地源瞬变电磁短偏移深部探测技术[J]. 地球物理学报, 2013,56(1):255-261.
doi: 10.6038/cjg20130126
[8] Xue G Q, Chen W Y, Zhou N N, et al. Short-offset TEM technique with a grounded wire source for deep sounding[J]. Chinese Journal of Geophysics, 2013,56(1):255-261.
[9] 何继善, 薛国强. 短偏移距电磁探测技术概述[J]. 地球物理学报, 2018,61(1):1-8.
[9] He J S, Xue G Q. Review of the key techniques on short-offset electromagnetic detection[J]. Chinese Journal of Geophysics, 2018,61(1):1-8.
[10] 卢云飞, 薛国强, 邱卫忠, 等. SOTEM研究及其在煤田采空区中的应用[J]. 物探与化探, 2017,41(2):354-359.
[10] Lu Y F, Xue G Q, Qiu W Z, et al. The research on SOTEM and its application in mined-out area of coal mine[J]. Geophysical and Geochemical Exploration, 2017,41(2):354-359.
[11] 陈卫营, 李海, 薛国强, 等. SOTEM数据一维OCCAM反演及其应用于三维模型的效果[J]. 地球物理学报, 2017,60(9):3667-3676.
[11] Chen W Y, Li H, Xue G Q, et al. 1D OCCAM inversion of SOTEM data and its application to D models[J]. Chinese Journal of Geophysics, 2017,60(9):3667-3676.
[12] Chen W Y, Xue G Q, Muhammad Y K, et al. Application of short-offset TEM (SOTEM) technique in mapping water-enriched zones of coal stratum, an example from East China[J]. Pure and Applied Geophysics, 2015,172(6):1643-1651.
doi: 10.1007/s00024-014-1028-z
[13] Zhou N N, Xue G Q, Hou D Y, et al. Short-offset grounded-wire TEM method for efficient detection of mined-out areas in vegetation-covered mountainous coalfields[J]. Exploration Geophysics, 2017,48:374-382.
doi: 10.1071/EG15095
[14] Chen W Y, Xue G Q, Afolagboye L O, et al. A comparison of loop time-domain electromagnetic and short-offset transient electromagnetic methods for mapping water-enriched zones- a case history in Shaanxi, China[J]. Geophysics, 2017,82(6):B201-B208.
doi: 10.1190/geo2017-0070.1
[15] 陈卫营, 薛国强, 崔江伟, 等. SOTEM响应特性分析与最佳观测区域研究[J]. 地球物理学报, 2016,59(2):739-748.
[15] Chen W Y, Xue G Q, Cui J W, et al. Study on the response and optimal obervation area for SOTEM[J]. Chinese Journal of Geophysics, 2016,59(2):739-748.
[16] 薛俊杰, 陈卫营, 王贺元. 电性源短偏移距瞬变电磁探测深度分析与应用[J]. 物探与化探, 2017,41(2):381-384.
[16] Xue J J, Chen W Y, Wang H Y. Analysis and application of the detection depth of electrical soure short-offset TEM[J]. Geophysical and Geochemical Exploration, 2017,41(2):381-384.
[17] 张书凡, 张宁, 刘鸿福. 基于小波分析的瞬变电磁信号消噪[J]. 物探与化探, 2007,31(S):63-65.
[17] Zhang S F, Zhang N, Liu H F. Noise elimination of transient electromagnetic (TEM) signal based on wavelet analysis[J]. Geophysical and Geochemical Exploration, 2007,31(S):63-65.
[18] Constable S C, Parker R L, Constable C G. OCCAM’s inversion:A practical algorithm for generation smooth models from electromagnetic sounding data[J]. Geophysics, 1987,52(3):289-300.
doi: 10.1190/1.1442303
[1] 张建智, 胡富杭, 刘海啸, 邢国章. 煤矿老窑采空区地—井TEM响应特征[J]. 物探与化探, 2022, 46(1): 191-197.
[2] 邢涛, 袁伟, 李建慧. 回线源瞬变电磁法的一维Occam反演[J]. 物探与化探, 2021, 45(5): 1320-1328.
[3] 赵旭辰, 李雪健, 曹芳智, 雷晓东, 李晨, 韩宇达. 井间电磁波CT在煤矿采空区探测效果分析[J]. 物探与化探, 2021, 45(4): 1088-1094.
[4] 张莹莹. 电性源瞬变电磁法综述[J]. 物探与化探, 2021, 45(4): 809-823.
[5] 李瑞友, 张淮清, 吴昭. 基于在线惯序极限学习机的瞬变电磁非线性反演[J]. 物探与化探, 2021, 45(4): 1048-1054.
[6] 裴肖明, 冯国瑞, 戚庭野. 瞬变电磁法探测复杂状态下煤矿充水采空区物理模拟实验[J]. 物探与化探, 2021, 45(4): 1055-1063.
[7] 刘伟, 黄韬, 王庭勇, 刘怡, 张继, 刘文涛, 张琦斌, 李强. 综合物探方法在城市隐伏断裂探测中的应用[J]. 物探与化探, 2021, 45(4): 1077-1087.
[8] 吴国培, 张莹莹, 张博文, 赵华亮. 基于深度学习的中心回线瞬变电磁全区视电阻率计算[J]. 物探与化探, 2021, 45(3): 750-757.
[9] 陈健强, 李雁川, 田浩, 李汉超. 含水采空区全空间瞬变电磁响应分析[J]. 物探与化探, 2021, 45(2): 546-550.
[10] 魏海民, 李星, 孙帮涛, 周胜, 牛杰. 地球物理方法在帷幕注浆治水中的探测分析[J]. 物探与化探, 2021, 45(1): 245-251.
[11] 张莹莹. 多辐射场源半航空瞬变电磁法多分量响应特征分析[J]. 物探与化探, 2021, 45(1): 102-113.
[12] 胡佳豪, 李貅, 刘航, 胡伟明, 岳鑫. TBM机施工隧道瞬变电磁超前探测研究[J]. 物探与化探, 2020, 44(5): 1183-1189.
[13] 田红军, 张光大, 刘光迪, 游文兵, 张应文. 黔北台隆区地热勘探中广域电磁法的应用效果[J]. 物探与化探, 2020, 44(5): 1093-1097.
[14] 李显成, 陈国庆, 邓明, 罗贤虎, 王猛, 段妮妮, 周励. 海洋可控源电磁发射系统状态信息采集技术研究[J]. 物探与化探, 2020, 44(5): 1153-1160.
[15] 郭嵩巍, 刘小畔, 郑凯, 张磊. 基于全区视电阻率的瞬变电磁一维Occam反演中雅克比矩阵的解析算法[J]. 物探与化探, 2020, 44(3): 559-567.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com