Please wait a minute...
E-mail Alert Rss
 
物探与化探  2021, Vol. 45 Issue (2): 546-550    DOI: 10.11720/wtyht.2021.1443
  工程勘察 本期目录 | 过刊浏览 | 高级检索 |
含水采空区全空间瞬变电磁响应分析
陈健强1,2,3(), 李雁川3, 田浩3, 李汉超3
1.煤炭科学技术研究院有限公司 安全分院,北京 100013
2.煤炭资源高效开采与洁净利用国家重点实验室(煤炭科学研究总院),北京 100013
3.山西晋煤集团技术研究院有限责任公司,山西 晋城 048006
Whole-space transient electromagnetic detection of water-bearing goaf
CHEN Jian-Qiang1,2,3(), LI Yan-Chuan3, TIAN Hao3, LI Han-Chao3
1. Mine Safety Technology Research Branch of China Coal Research Institute, Beijing 100013, China
2. State Key Laboratory of Coal Mining and Clean Utilization, China Coal Research Institute, Beijing 100013, China
3. Jincheng Anthracite Mining Group Technology Research Co., Ltd., Jincheng 048006, China
全文: PDF(1402 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

针对含水采空区全空间瞬变电磁响应信号识别问题,采用有限元数值模拟及现场实测方法,基于电动势—视电阻率及对应时深转换关系,获取了全扇面视电阻率随深度变化的空间分布规律,提取了低阻异常区测点感应电动势衰减曲线,得出了测点随探测角度变化的电动势量化变化规律。基于上述研究,开展了井下钻探验证及钻孔窥视,并对现场钻孔出水水样进行了水质分析。结果表明:含水采空区的瞬变电磁响应横向角度对应一致性高于纵向深度;其感应电动势升幅与感应电动势差值变化趋势相反,呈现出在二次场观测初期急剧增大而后趋缓的特征,最大升幅可达10倍以上。钻探工程及化探分析进一步验证了物探成果。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈健强
李雁川
田浩
李汉超
关键词 含水采空区全空间瞬变电磁法有限元模拟电动势升幅钻探化探    
Abstract

Aiming at tackling the problem of whole-space transient electromagnetic response signal identification in water-bearing goaf and based on induced electromotive force (EMF)-apparent resistivity and time-depth conversion relationship, the authors obtained the spatial distribution law of apparent resistivity with depth variation of the whole sector by using the finite element numerical simulation and field measurement method, extracted the EMF attenuation curve of the measuring point in the low resistance abnormal area, and calculated the voltage rise amplitude of the measuring point varying with the detection angle. Based on the above research, the authors carried out the drilling verification and borehole peeping, and analyzed the content of the drilling water samples. The results show that the transverse angle consistency of transient electromagnetic response of water-bearing goaf is higher than that of vertical depth, and the rising amplitude of EMF in the abnormal region of low resistance is opposite to the difference of induced voltage, which shows a sharp increase in the initial stage of secondary field observation followed by slowing down, reaching more than 10 times on the whole. Drilling engineering and geochemical exploration analysis further verify the geophysical exploration results.

Key wordswater-bearing goaf    whole-space transient electromagnetic method    finite element simulation    voltage rise amplitude    drilling    geochemical exploration
收稿日期: 2020-09-08      出版日期: 2021-04-29
:  TD166  
基金资助:煤科院科技发展基金项目技术创新基金(2019CX-II-14);国家自然科学基金青年科学基金项目(51704162)
作者简介: 陈健强(1993-),男,安徽合肥人,硕士,研究实习员,主要从事防治水物探相关实践及研究工作。Email: ccricjq@126.com
引用本文:   
陈健强, 李雁川, 田浩, 李汉超. 含水采空区全空间瞬变电磁响应分析[J]. 物探与化探, 2021, 45(2): 546-550.
CHEN Jian-Qiang, LI Yan-Chuan, TIAN Hao, LI Han-Chao. Whole-space transient electromagnetic detection of water-bearing goaf. Geophysical and Geochemical Exploration, 2021, 45(2): 546-550.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2021.1443      或      https://www.wutanyuhuatan.com/CN/Y2021/V45/I2/546
Fig.1  有限元模型示意
Fig.2  含水采空区测点电动势模拟成果
Fig.3  含水采空区空间电性模拟结果
Fig.4  模拟含水采空区二次场电动势变化
Fig.5  含水采空区空间电性实测成果
Fig.6  实测含水采空区二次场电动势及其衰减特征
Fig.7  钻孔设计
Fig.8  钻孔窥视成果
Fig.9  钻物探成果叠加
离子 浓度/(mg·L-1) 占比/%
K+ 8.71 0.67
Na+ 216 28.29
阳离子 Ca2+ 112 16.87
Mg2+ 217.6 53.96
Fe3+ 1.27 0.21
Cl- 50.35 7.79
HCO3- 420 37.83
阴离子 CO32- 0 0
SO42- 473.9 54.24
NO2- 1.19 0.14
Table 1  水样离子浓度
[1] 钟声, 王士党. 地面与井下瞬变电磁法联合探测煤矿富水区域[J]. 物探与化探, 2016,40(3):635-638.
[1] Zhong S, Wang S D. The application of combined ground and underground coal mine transient electromagnetic methods to the exploration of water-rich area[J]. Geophysical and Geochemical Exploration, 2016,40(3):635-638.
[2] 丁亮斌, 李铁亮. 小煤窑采空积水区的探查方法[J]. 煤矿安全, 2019,50(5):150-152.
[2] Ding L B, Li T L. Method for finding out water accumulation area in small coal mine[J]. Safety in Coal Mines, 2019,50(5):150-152.
[3] 刘百祥, 鲜鹏辉, 仇念广. 瞬变电磁法在探查工作面上覆煤层采空区富水性中的应用[J]. 煤矿安全, 2020,51(4):137-141.
[3] Liu B X, Xian P H, Qiu N G. Application of transient electromagnetic method in detecting water richness in goaf of overburden coal seam at working face[J]. Safety in Coal Mines, 2020,51(4):137-141.
[4] 易洪春. 地—井瞬变电磁响应特征研究[J]. 物探与化探, 2018,42(5):970-976.
[4] Yi H C. Research on response of ground-borehole TEM[J]. Geophysical and Geochemical Exploration, 2018,42(5):970-976.
[5] 张永超, 贾新果, 陈凯, 等. 瞬变电磁法探测超高水材料注浆治理采空区效果[J]. 煤炭科学技术, 2017,45(3):174-178,100.
[5] Zhang Y C, Jia X G, Chen K, et al. TEM inspecting of goaf treatment effect with grouting super high water material[J]. Coal Science and Technology, 2017,45(3):174-178,100.
[6] 王鹏, 程建远, 姚伟华, 等. 积水采空区地面-钻孔瞬变电磁探测技术[J]. 煤炭学报, 2019,44(8):2502-2508.
[6] Wang P, Cheng J Y, Yao W H, et al. Technology of detecting water-filled goaf beside borehole using downhole transient electromagnetic method[J]. Journal of China Coal Society, 2019,44(8):2502-2508.
[7] 于景邨, 常江浩, 苏本玉, 等. 老空水全空间瞬变电磁法探测三维数值模拟研究[J]. 煤炭科学技术, 2015,43(1):95-99,103.
[7] Yu J C, Chang J H, Su B Y, et al. Study on whole space transient electromagnetic method prospect three dimensional numerical modeling of gob water[J]. Coal Science and Technology, 2015,43(1):95-99,103.
[8] 牟义. 典型地质异常体电磁法响应特征研究[J]. 煤矿开采, 2017,22(4):4-9.
[8] Mu Y. Study of electromagnetic response characteristics of typical geological anomalous body[J]. Coal Mining Technology, 2017,22(4):4-9.
[9] 牟义, 李江华, 徐慧, 等. 矿井瞬变电磁法参数优化试验及超前探测应用[J]. 煤炭科学技术, 2020,48(6):184-190.
[9] Mu Y, Li J H, Xu H, et al. Parameters optimization test of mine transient electromagnetic method and application of advanced detection[J]. Coal Science and Technology, 2020,48(6):184-190.
[10] 陈健强, 张永超, 邱浩, 等. 井下富水区瞬变电磁响应特征分析[J]. 煤矿安全, 2019,50(10):185-189.
[10] Chen J Q, Zhang Y C, Qiu H, et al. Transient electromagnetic response characteristics of mine water-rich area[J]. Safety in Coal Mines, 2019,50(10):185-189.
[11] 邱浩, 郝宇军, 陈健强. 煤矿采空区瞬变电磁超前探测波场成像研究[J]. 煤炭工程, 2020,52(2):56-58.
[11] Qiu H, Hao Y J, Chen J Q. Wave field imaging system in advance detection of watery goaf using mine transient electromagnetic method[J]. Coal Engineering, 2020,52(2):56-58.
[12] 于景邨, 胡兵, 刘振庆, 等. 矿井瞬变电磁探测技术的应用[J]. 物探与化探, 2011,35(4):532-535.
[12] Yu J C, Hu B, Liu Z Q, et al. The application of mine transient electro-magnetic detection technology[J]. Geophysical and Geochemical Exploration, 2011,35(4):532-535.
[13] 黎灵. 强水力联系采空水害补给综合判定技术[J]. 煤矿开采, 2018,23(4):93-96,32.
[13] Li L. Comprehensive judgement method of goaf water disaster alimentation under strengthen hydraulic connection[J]. Coal Mining Technology, 2018,23(4):93-96,32.
[1] 程云涛, 刘俊峰, 曹创华, 王荡. 衡阳盆地西北缘物化探特征及其找矿意义[J]. 物探与化探, 2021, 45(5): 1189-1195.
[2] 胡斌, 李广之. 油气化探分析测试质量监控与评估方法探讨[J]. 物探与化探, 2021, 45(4): 1043-1047.
[3] 耿国帅, 杨帆, 郭建娜. 变换后数据的因子分区标准化在东昆仑东段地球化学异常圈定中的应用[J]. 物探与化探, 2020, 44(1): 112-121.
[4] 严海麒, 云辉, 王恺莉, 宋勤昌, 常永军. 河南汝阳竹园沟钼矿床物化探异常特征及找矿效果[J]. 物探与化探, 2018, 42(4): 675-681.
[5] 白国典, 何凯, 琚根社, 王坤, 王艳慧, 李兰兰. 区域化探成果在青海北巴颜喀拉山地区地质填图中的应用[J]. 物探与化探, 2018, 42(3): 429-435.
[6] 赵静, 梁前勇, 张莉, 钟广见. 基于酸解烃判别台湾海峡盆地西部坳陷含油气系统的油气藏属性[J]. 物探与化探, 2018, 42(3): 436-441.
[7] 李春亮, 张炜. 甘肃省祁连山西段地球化学分区及其特征[J]. 物探与化探, 2018, 42(2): 312-315.
[8] 刘生荣, 张瑾爱, 唐小平. 探地雷达在探测基岩顶深度中的应用[J]. 物探与化探, 2018, 42(2): 325-330.
[9] 卢丽, 宁丽荣, 孙长青, 高俊阳, 王国建, 杨俊. 快速溶剂萃取—荧光法检测化探样品中的芳烃[J]. 物探与化探, 2018, 42(2): 369-373.
[10] 相丽娜, 王志宏, 孙栋华, 伍显红, 魏永强. 航电在高山区找矿快速突破中的应用[J]. 物探与化探, 2018, 42(2): 225-233.
[11] 张秀芝, 王俊达, 张城钢, 谢晓阳. 上黄旗—乌龙沟断裂带走马驿—大河南区段地球化学异常解析[J]. 物探与化探, 2018, 42(1): 14-20.
[12] 王国建, 汤玉平, 唐俊红, 李吉鹏, 杨俊, 李兴强. 断层对烃类微渗漏主控作用及异常分布影响的实验模拟研究[J]. 物探与化探, 2018, 42(1): 21-27.
[13] 方慧, 孙忠军, 徐明才, 林振洲. 冻土区天然气水合物勘查技术研究主要进展与成果[J]. 物探与化探, 2017, 41(6): 991-997.
[14] 宁丽荣, 孙长青, 荣发准, 杨帆, 卢丽. 超临界CO2萃取技术在地表油气化探中的应用[J]. 物探与化探, 2017, 41(5): 815-820.
[15] 白德胜, 杨怀辉, 纵瑞, 刘正好, 王滑冰. 地、物、化综合方法在豫西小河岩体南缘找矿中的应用[J]. 物探与化探, 2017, 41(5): 794-801.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com