Please wait a minute...
E-mail Alert Rss
 
物探与化探  2019, Vol. 43 Issue (6): 1399-1403    DOI: 10.11720/wtyht.2019.0266
  工程勘察 本期目录 | 过刊浏览 | 高级检索 |
基于物探结果分析采动对急倾斜煤层底板突水影响
王玉和, 崔增斌(), 李春朋
山东科技大学(青岛) 矿业与安全工程学院,山东 青岛 266590
An analysis of the influence of mining on water inrush from steep seam floor based on geophysical exploration results
Yu-He WANG, Zeng-Bin CUI(), Chun-Peng LI
Shandong Science and Technology University (Qingdao), Qingdao 266590, China
全文: PDF(3194 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

为了解急倾斜煤层回采过程中不同推进距离对工作面底板突水的影响,采用瞬变电磁法对山东某矿31515工作面底板含水性强弱和含水层位置进行探测,明确了15号煤底板岩层存在徐奥灰含水性较强区域;进而采用有限元差分软件FLAC 3D模拟不同推进长度时,承压含水层上急倾斜煤层工作面底板突水通道形成与演化过程,以及随着工作面的推进,底板承压水导升高度与渗流矢量变化情况。结果表明,工作面的回采使底板形成塑性破坏区,并且在底板承压含水层的水的孔隙压力的作用下,承压水导升带与底板采动破坏带导通,从而容易发生煤层底板突水的危险。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王玉和
崔增斌
李春朋
关键词 瞬变电磁法井下含水层底板突水数值模拟    
Abstract

In order to understand the influence of different propelling distances on water inrush from the working face floor during the mining of steep inclined coal seam, the authors detected the water-bearing strength and water-bearing position of the working face floor at 31515 of a coal mine in Shandong Province by TEM. Then, the fem difference software FLAC 3D was used to simulate the formation and evolution of water inrush channels on the bottom of steep inclined coal seam face in the confined aquifer when different propulsion lengths were simulated. And the change of the pressure water conduction height and seepage flow vector of the bottom plate with the advance of the working face was investigated. The results show that the working face stoping makes the floor form the plastic failure zone, and under the action of the pore pressure of the water in the confined aquifer of the floor, the uplift zone of confined water and the mining failure zone of the floor are conductive, thus the risk of water inrush from the coal seam floor is easy to occur.

Key wordsTEM    downhole aquifer    bottom water inrush    numerical simulation
收稿日期: 2019-05-11      出版日期: 2019-11-28
:  P631  
通讯作者: 崔增斌
作者简介: 王玉和(1971-),河南信阳人,副教授,博士,研究方向:煤矿安全。Email:wwyyhh@126.com
引用本文:   
王玉和, 崔增斌, 李春朋. 基于物探结果分析采动对急倾斜煤层底板突水影响[J]. 物探与化探, 2019, 43(6): 1399-1403.
Yu-He WANG, Zeng-Bin CUI, Chun-Peng LI. An analysis of the influence of mining on water inrush from steep seam floor based on geophysical exploration results. Geophysical and Geochemical Exploration, 2019, 43(6): 1399-1403.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2019.0266      或      https://www.wutanyuhuatan.com/CN/Y2019/V43/I6/1399
Fig.1  瞬变电磁法探测(竖直方向)视电阻率断面
Fig.2  瞬变电磁法探测(面内底板45°方向)视电阻率断面
Fig.3  沿煤层倾斜方向底板塑性区随工作面推进时的变化云图
Fig.4  工作面分步推进过程中所得底板孔隙水压力及渗流矢量云图
[1] 邱梅, 施龙青, 滕超 , 等. 赵官井田10煤层底板突水危险性评价[J]. 煤田地质与勘探, 2015,43(3):61-65.
[1] Qiu M, Shi L Q, Teng C , et al. Evaluation of water inrush risk for No.10 coal seam floor of Zhaoguan mine field[J]. Coal Geology & Exploration, 2015,43(3):61-65.
[2] 孙明, 张文泉, 郭启忠 , 等. 基于模糊神经理论的深井煤层底板突水因素研究[J]. 湖南科技大学学报:自然科学版, 2011,26(4):5-10.
[2] Sun M, Zhang W Q, Guo Q Z , et al. Research on main influence factors of deep seam mining floor water-bursting based on combined fuzzy neural network[J]. Journal of Hunan University of Science & Technology(Natural Science Edition), 2011,26(4):5-10.
[3] 付志鹏, 严克伍, 曾新平 , 等. 小纪汗煤矿11203工作面开采底板岩体破坏深度研究[J]. 煤矿开采, 2018, 23(5):83-86+82.
[3] Fu Z P, Yan K W, Zeng X P , et al. Study of floor rock mass broken depth of 11203 working face mining of Xiaojihan coal mine[J]. Coal Mining Technology, 2018, 23(5):83-86+82.
[4] 赵志刚, 赵春波 . 不同采动对含断层底板破坏影响数值模拟[J]. 矿业研究与开发, 2018,38(9):22-25.
[4] Zhao Z G, Zhao C B . Numerical simulation about the different mining effects on the failure of floor with fault[J]. Mining Research and Development. 2018,38(9):22-25.
[5] 马凯, 白海波, 祁静 , 等. 司马煤矿底板断层活化突水机理分析[J]. 煤炭工程, 2018,50(1):85-88.
[5] Ma K, Bai H B, Qi J , et al. Analysis on mechanism of fault activation and water inrush from floor fault in Sima Coal Mine[J]. Coal Engineering. 2018,50(1):85-88.
[6] 李浩, 白海波, 武建军 , 等. 岩体循环加卸载力学特性对完整底板导水通道演化影响研究[J]. 岩石力学与工程学报, 2018,37(S1):3470-3480.
[6] Li H, Bai H B, Wu J J , et al. Study on the influence of mechanical properties of rock mass cyclic loading and unloading on the evolution of the intact floor[J]. Chinese Journal of Rock Mechanics and Engineering, 2018,37(S1):3470-3480.
[7] 师皓宇, 石建军, 田多 , 等. 承压水上采场底板应力场分布及隔水层破断机理[J]. 煤炭科学技术, 2016, 44(11):47-50+72.
[7] Shi H Y, Shi J J, Tian D , et al. Stress field distribution of stope floor over confined water and failure mechanism of aquifuge[J]. Coal Science and Technology, 2016, 44(11):47-50+72.
[8] 高召宁, 孟祥瑞, 郑志伟 . 采动应力效应下的煤层底板裂隙演化规律研究[J]. 地下空间与工程学报, 2016,12(1):90-95.
[8] Gao Z N, Meng X R, Zheng Z W . Research on evolution rules of coal seam floor crack under mining stress effect[J]. Chinese Journal of Underground Space and Engineering, 2016,12(1):90-95.
[9] 鲁海峰, 姚多喜, 胡友彪 , 等. 水压影响下煤层底板采动破坏深度弹性力学解[J]. 采矿与安全工程学报, 2017,34(3):452-458.
[9] Lu H F, Yao D X, Hu Y B , et al. Elasticity solution for failure depth of mining floor under water pressure[J]. Journal of Mining & Safety Engineering, 2017,34(3):452-458.
[10] 张士川, 郭惟嘉, 孙文斌 , 等. 煤矿突水行为研究系列试验装置研发及应用[J]. 金属矿山, 2017(2):135-140.
[10] Zhang S C, Guo W J, Sun W B , et al. Development and application of the series of test device of coal mine water inrush behavior[J]. Metal Mine, 2017(2):135-140.
[11] 许延春, 古文哲, 曹旭初 , 等. 赵固一矿底板灰岩含水层采动影响研究[J]. 煤炭工程, 2016,48(6):91-94.
[11] Xu Y C, Gu W Z, Cao X C , et al. Study of mining influence on floor limestone aquifers in Zhaogu No.1 mine[J]. Coal Engineering, 2016,48(6):91-94.
[12] 常江浩, 于景邨, 蒋宗霖 . 煤矿老空水瞬变电磁响应特征数值模拟[J]. 矿业安全与环保, 2014,41(3):4-8.
[12] Chang H J, Yu J C, Jiang Z L J . Numerical simulation of transient electromagnetic response characteristics of mine gob water[J]. Mining Safety & Environmental Protection, 2014,41(3):4-8.
[13] 范涛, 安绍鹏, 王秀臣 , 等. 煤矿采空区探测中的瞬变电磁干扰压制[J]. 物探与化探, 2012,36(6):1006-1009.
[13] Fan T, An S P, Wang X C , et al. TEM interference suppression in exploration of the minim-out are in the coal mine[J]. Geophysical and Geochemical Exploration, 2012,36(6):1006-1009.
[1] 张建智, 胡富杭, 刘海啸, 邢国章. 煤矿老窑采空区地—井TEM响应特征[J]. 物探与化探, 2022, 46(1): 191-197.
[2] 肖妍姗, 周正华, 苏杰, 魏鑫. 地表水平正反敲击激振下孔法剪切波速测试理论依据讨论[J]. 物探与化探, 2021, 45(5): 1288-1294.
[3] 邢涛, 袁伟, 李建慧. 回线源瞬变电磁法的一维Occam反演[J]. 物探与化探, 2021, 45(5): 1320-1328.
[4] 张莹莹. 电性源瞬变电磁法综述[J]. 物探与化探, 2021, 45(4): 809-823.
[5] 李瑞友, 张淮清, 吴昭. 基于在线惯序极限学习机的瞬变电磁非线性反演[J]. 物探与化探, 2021, 45(4): 1048-1054.
[6] 裴肖明, 冯国瑞, 戚庭野. 瞬变电磁法探测复杂状态下煤矿充水采空区物理模拟实验[J]. 物探与化探, 2021, 45(4): 1055-1063.
[7] 刘伟, 黄韬, 王庭勇, 刘怡, 张继, 刘文涛, 张琦斌, 李强. 综合物探方法在城市隐伏断裂探测中的应用[J]. 物探与化探, 2021, 45(4): 1077-1087.
[8] 吴国培, 张莹莹, 张博文, 赵华亮. 基于深度学习的中心回线瞬变电磁全区视电阻率计算[J]. 物探与化探, 2021, 45(3): 750-757.
[9] 陈健强, 李雁川, 田浩, 李汉超. 含水采空区全空间瞬变电磁响应分析[J]. 物探与化探, 2021, 45(2): 546-550.
[10] 苏鹏, 杨进. 时移电阻率反演模拟研究[J]. 物探与化探, 2021, 45(1): 159-164.
[11] 张莹莹. 多辐射场源半航空瞬变电磁法多分量响应特征分析[J]. 物探与化探, 2021, 45(1): 102-113.
[12] 魏海民, 李星, 孙帮涛, 周胜, 牛杰. 地球物理方法在帷幕注浆治水中的探测分析[J]. 物探与化探, 2021, 45(1): 245-251.
[13] 胡佳豪, 李貅, 刘航, 胡伟明, 岳鑫. TBM机施工隧道瞬变电磁超前探测研究[J]. 物探与化探, 2020, 44(5): 1183-1189.
[14] 陈大磊, 陈卫营, 郭朋, 王润生, 王洪军, 张超, 马启合, 贺春燕. SOTEM法在城镇强干扰环境下的应用——以坊子煤矿采空区为例[J]. 物探与化探, 2020, 44(5): 1226-1232.
[15] 武建平, 张超, 陈剑平, 杨玺, 裴运军, 周庆东. 广域电磁法三维有限单元法模拟研究[J]. 物探与化探, 2020, 44(5): 1066-1072.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com