Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (4): 1125-1135    DOI: 10.11720/wtyht.2024.1336
  生态地质调查 本期目录 | 过刊浏览 | 高级检索 |
水土流失区土壤硒、锌地球化学特征及其生物有效性——以福建省长汀县为例
唐志敏1(), 张晓东1(), 梅丽辉2, 湛龙1, 陈国光1, 刘红樱1, 周墨1, 张明1, 张洁1
1.中国地质调查局 南京地质调查中心,江苏 南京 210016
2.江西省地质局第一地质大队,江西 南昌 330200
Geochemical characteristics and bioavailability of selenium and zinc in soils in an area subjected to water and soil erosion : A case study of Changting County, Fujian Province
TANG Zhi-Min1(), ZHANG Xiao-Dong1(), MEI Li-Hui2, ZHAN Long1, CHEN Guo-Guang1, LIU Hong-Ying1, ZHOU Mo1, ZHANG Ming1, ZHANG Jie1
1. Nanjing Center, China Geological Survey, Nanjing 210016, China
2. The First Geological Brigade of Jiangxi Geological Bureau, Nanchang 330200, China
全文: PDF(5570 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

水土流失影响着土壤中元素的分布与分配,土壤中硒、锌等微量有益元素在水土流失区的分布、分配规律及其生物有效性是衡量水土流失生态效应的重要因素。针对水土流失区硒、锌的地球化学特征及生物有效性,以福建省长汀县水土流失区为例开展了土壤及农作物地球化学调查,获取了水土流失区土壤及农作物Se、Zn的关键地球化学参数。结果发现:水土流失区土壤Se含量中位值为0.43×10-6,Zn含量中位值为46×10-6;Se富集于变质岩发育的土壤中,Zn富集于变质岩和花岗岩发育的土壤中;土壤Se、Zn在竹林地中含量相对其他土地利用类型更高;随着水土流失程度的增加,土壤Se含量呈递减趋势;Se、Zn的生物富集系数与土壤w(Si)/w(Al)值呈显著正相关,与土壤Se、Zn以及有机质等指标含量呈显著负相关。结果表明:长汀县水土流失区土壤Se、Zn的分布、分配主要受变质岩和花岗岩的控制;水土流失过程存在显著的土壤Se流失;土壤Se、Zn生物有效性受黏土矿物及有机质吸附的影响而呈现降低,水土流失区土壤中非活性态的Se、Zn可能存在较大比例。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
唐志敏
张晓东
梅丽辉
湛龙
陈国光
刘红樱
周墨
张明
张洁
关键词 水土流失土壤SeZn生物有效性    
Abstract

Water and soil erosion affects the distribution and partitioning of elements in soils. The distribution and partitioning patterns and bioavailability of trace beneficial elements such as selenium (Se) and zinc (Zn) in water and soil erosion areas serve as significant factors for measuring the ecological effects of water and soil erosion. Through the geochemical survey of soil and crops, this study investigated the geochemical characteristics and bioavailability of Se and Zn in the water and soil erosion area of Changting County, Fujian Province, obtaining the critical geochemical parameters of Se and Zn in soil and crops in the study area. The results are as follows: (1) The soil Se and Zn contents in the study area show median values of 0.43×10-6 and 46×10-6, respectively; (2) Se is enriched in the soil developed from metamorphic rocks, whereas Zn is enriched in the soil developed from metamorphic rocks and granites; (3) The soil Se and Zn contents are higher in bamboo forests compared to other land-use types; (4) The soil Se content shows a decreasing trend as the water and soil erosion intensifies; (5) The bio-concentration factors of Se and Zn are significantly positively correlated with w(Si)/w(Al) ratios, and negatively correlated with Se, Zn, and organic matter. As indicated by the results above, the distribution and partitioning of soil trace beneficial elements like Se and Zn in the study area are primarily subjected to metamorphic rocks and granites. The water and soil erosion is accompanied by a significant soil Se loss. The bioavailability of soil Se and Zn is reduced by the adsorption of clay minerals and organic matter. Additionally, there may be a large proportion of inactive Se and Zn in the soil of the water and soil erosion area.

Key wordswater and soil erosion    soil    Se    Zn    bioavailability
收稿日期: 2023-07-28      修回日期: 2023-10-20      出版日期: 2024-08-20
ZTFLH:  P595  
基金资助:中国地质调查局项目(DD20230103);中国地质调查局项目(DD20230495)
通讯作者: 张晓东(1981-),男,硕士,高级工程师,主要研究方向为生态地质。Email:89476088@qq.com
作者简介: 唐志敏(1992-),男,硕士,工程师,主要研究方向为环境地球化学。Email:894431121@qq.com
引用本文:   
唐志敏, 张晓东, 梅丽辉, 湛龙, 陈国光, 刘红樱, 周墨, 张明, 张洁. 水土流失区土壤硒、锌地球化学特征及其生物有效性——以福建省长汀县为例[J]. 物探与化探, 2024, 48(4): 1125-1135.
TANG Zhi-Min, ZHANG Xiao-Dong, MEI Li-Hui, ZHAN Long, CHEN Guo-Guang, LIU Hong-Ying, ZHOU Mo, ZHANG Ming, ZHANG Jie. Geochemical characteristics and bioavailability of selenium and zinc in soils in an area subjected to water and soil erosion : A case study of Changting County, Fujian Province. Geophysical and Geochemical Exploration, 2024, 48(4): 1125-1135.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1336      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I4/1125
Fig.1  研究区岩石建造类型
Fig.2  长汀县水土流失区分布
Fig.3  研究区土壤中Se(a)、Zn(b)含量直方图
元素 平均值 中位数 最小值 最大值 标准差 变异系数 全国土壤背景值[23] 福建省土壤背景值[23]
Se 0.46 0.43 0.05 1.06 0.20 44% 0.22 0.32
Zn 48 46 6 117 23 48% 67 70
Table 1  研究区土壤Se、Zn含量描述统计结果
Fig.4  研究区不同岩石建造发育土壤的Se(a)、Zn(b)元素含量箱线图
Fig.5  不同土地利用类型土壤Se(a)、Zn(b)含量箱线图
Fig.6  不同水土流失程度区土壤Se(a)、Zn(b)含量箱线图
Fig.7  研究区土壤Se(a)、Zn(b)地球化学分布
指标 PC1 PC2 PC3 PC4
pH值 -0.201 0.154 0.794 -0.352
S 0.644 -0.449 0.331 0.182
Se 0.779 -0.313 -0.132 0.122
Zn 0.663 0.361 0.255 -0.199
SiO2 -0.886 -0.331 0.162 0.163
Al2O3 0.479 0.626 -0.289 -0.353
TFe2O3 0.853 -0.155 -0.045 -0.258
MgO 0.654 -0.150 0.168 -0.083
CaO -0.010 0.092 0.864 -0.014
Na2O 0.050 0.633 0.176 0.594
K2O 0.164 0.815 -0.008 0.304
有机质 0.687 -0.296 0.133 0.521
方差的百分比/% 34.8 18.0 14.7 9.6
累积百分比/% 34.8 52.8 67.5 77.1
Table 2  主成分分析结果
Fig.8  土壤元素主成分载荷
指标 Zn-R Se-R SiO2 Al2O3 CaO TFe2O3 K2O MgO Na2O pH S 有机质 Se-T Zn-T BCFSe BCFZn w(Si)/
w(Al)
CIA w(Fe)/
w(Mg)
Zn-R 1.000
Se-R 0.346* 1.000
SiO2 0.007 -0.503** 1.000
Al2O3 0.051 0.506** -0.963** 1.000
CaO -0.122 0.387** -0.526** 0.416** 1.000
TFe2O3 0.052 0.563** -0.733** 0.576** 0.600** 1.000
K2O -0.295* -0.163 -0.494** 0.455** 0.169 0.135 1.000
MgO -0.106 0.158 -0.268 0.039 0.545** 0.710** 0.134 1.000
Na2O -0.310* -0.216 -0.179 0.098 0.272 0.061 0.765** 0.281 1.000
pH -0.140 -0.230 0.426** -0.539** 0.335* -0.037 -0.172 0.396** 0.183 1.000
S -0.019 0.055 -0.351* 0.447** 0.187 -0.163 0.119 -.388** -0.104 -.368** 1.000
有机质 0.049 0.258 -0.597** 0.620** 0.466** 0.215 0.180 -0.040 -0.020 -.297* 0.774** 1.000
Se-T 0.042 0.649** -0.739** 0.661** 0.700** 0.788** 0.035 0.386** -0.036 -0.058 0.189 0.575** 1.000
Zn-T -0.147 0.290* -0.719** 0.582** 0.661** 0.732** 0.541** 0.631** 0.494** 0.069 -0.035 0.349* 0.633** 1.000
BCFSe 0.289* 0.005 0.613** -0.513** -0.556** -0.582** -0.238 -0.379** -0.140 -0.027 -0.216 -0.520** -0.729** -0.611** 1.000
BCFZn 0.533** -0.055 0.649** -0.511** -0.573** -0.576** -0.613** -0.540** -0.544** -0.041 -0.056 -0.346* -0.495** -0.839** 0.664** 1.000
w(Si)/
w(Al)
0.096 -0.349* 0.939** -0.909** -0.466** -0.606** -0.637** -0.236 -0.327* 0.412** -0.315* -0.547** -0.617** -0.679** 0.605** 0.696** 1.000
CIA 0.281 0.615** -0.532** 0.618** 0.166 0.416** -0.370** -0.141 -0.611** -.455** 0.315* 0.414** 0.588** 0.069 -0.307* 0.060 -0.392** 1.000
w(Fe)/
w(Mg)
0.180 0.516** -0.575** 0.676** 0.092 0.345* -0.026 -0.384** -0.251 -.553** 0.264 0.304* 0.505** 0.088 -0.269 -0.019 -0.478** 0.735** 1.000
Table 3  水稻Se、Zn含量与根系土指标相关系数
Fig.9  研究区水稻BCFSe(a)、BCFZn(b)与土壤w(Si)/w(Al)值散点图
Fig.10  研究区水稻BCFSe(a)、BCFZn(b)与土壤有机质散点图
Fig.11  研究区水稻BCFSe(a)、BCFZn(b)与土壤Se、Zn散点图
[1] 李智广, 曹炜, 刘秉正, 等. 我国水土流失状况与发展趋势研究[J]. 中国水土保持科学, 2008, 6(1):57-62.
[1] Li Z G, Cao W, Liu B Z, et al. Current status and developing trend of soil erosion in China[J]. Science of Soil and Water Conservation, 2008, 6(1):57-62.
[2] 史德明. 土壤侵蚀对生态环境与自然灾害的影响[J]. 地球科学进展, 1990, 5(4):41-44.
[2] Shi D M. Influence of soil erosion on ecological environment and natural disasters[J]. Advance in Earth Sciences, 1990, 5(4):41-44.
[3] 刘国华, 傅伯杰, 陈利顶, 等. 中国生态退化的主要类型、特征及分布[J]. 生态学报, 2000, 20(1):1-7.
[3] Liu G H, Fu B J, Chen L D, et al. Main types,characteristics and distribution of ecological degradation in China[J]. Acta Ecologica Sinica, 2000, 20(1):1-7.
[4] 史志华, 刘前进, 张含玉, 等. 近十年土壤侵蚀与水土保持研究进展与展望[J]. 土壤学报, 2020, 57(5):1117-1127.
[4] Shi Z H, Liu Q J, Zhang H Y, et al. Study on soil erosion and conservation in the past 10 years:Progress and prospects[J]. Acta Pedologica Sinica, 2020, 57(5):1117-1127.
[5] Shi P, Schulin R. Erosion-induced losses of carbon,nitrogen,phosphorus and heavy metals from agricultural soils of contrasting organic matter management[J]. Science of the Total Environment, 2018, 618:210-218.
[6] Berhe A A, Barnes R T, Six J, et al. Role of soil erosion in biogeochemical cycling of essential elements:Carbon,nitrogen,and phosphorus[J]. Annual Review of Earth and Planetary Sciences, 2018, 46:521-548.
[7] 宁嘉丽, 黄艳荟, 李桂芳, 等. 自然降雨下蔬菜地土壤侵蚀及氮素流失特征[J]. 环境科学, 2023, 44(1):293-302.
[7] Ning J L, Huang Y H, Li G F, et al. Characteristics of soil erosion and nitrogen loss in vegetable field under natural rainfall[J]. Environmental Science, 2023, 44(1):293-302.
[8] Liu M D, Zhang Q R, Ge S D, et al. Rapid increase in the lateral transport of trace elements induced by soil erosion in major Karst regions in China[J]. Environmental Science & Technology, 2019, 53(8):4206-4214.
[9] 谭见安. 环境生命元素与克山病:生态化学地理研究[M]. 北京: 中国医药科技出版社, 1996.
[9] Tan J A. Environmental life elements and Keshan disease[M]. Beijing: China Medical Science and Technology Press, 1996.
[10] 李继云, 陈代中, 任尚学, 等. 影响人体硒低的环境因素——陕西渭北高塬大骨节病区的调查[J]. 环境科学, 1992, 13(6):16-22,84-85.
[10] Li J Y, Chen D Z, Ren S X, et al. Environmental factors causing the low levei of Se in human body—A survey on the kaschin beck disease region in Loess Plateau,Shanxi Provice[J]. Environmental Science, 1992, 13(6):16-22,84-85.
[11] 陈雷. 大力推广长汀经验扎实做好水土流失治理工作[J]. 中国水土保持, 2012(6):1-3,29.
[11] Chen L. Vigorously popularize Changting's experience and do a good job in soil erosion control[J]. Soil and Water Conservation in China, 2012(6):1-3,29.
[12] 张巧颖, 陈志强, 陈志彪, 等. 长汀县红壤侵蚀区土壤生态化学计量学特征[J]. 四川师范大学学报:自然科学版, 2017, 40(5):699-702.
[12] Zhang Q Y, Chen Z Q, Chen Z B, et al. Characteristics of soil ecological stoichiometry in red soil erosion area in Changting County[J]. Journal of Sichuan Normal University:Natural Science, 2017, 40(5):699-702.
[13] 李巍, 王成己, 谭丽婷, 等. 基于主成分分析的南方红壤水土流失区土壤肥力质量评价——以福建长汀、福州、武夷山为例[J]. 安徽农学通报, 2018, 24(9):58-60,100.
[13] Li W, Wang C J, Tan L T, et al. The study of soil fertility quality evaluation in the red soil region of erosion area in South China based on principal component analysis—Taking Fujian Changting,Fuzhou and Wuyishan as examples[J]. Anhui Agricultural Science Bulletin, 2018, 24(9):58-60,100.
[14] 张克信, 潘桂棠, 何卫红, 等. 中国构造—地层大区划分新方案[J]. 地球科学, 2015, 40(2):206-233.
[14] Zhang K X, Pan G T, He W H, et al. New division of tectonic-strata superregion in China[J]. Earth Science, 2015, 40(2):206-233.
[15] 严明书, 黄剑, 何忠庠, 等. 地质背景对土壤微量元素的影响——以渝北地区为例[J]. 物探与化探, 2018, 42(1):199-205,219.
[15] Yan M S, Huang J, He Z X, et al. The influence of geological background on trace elements of soil:A case study of Yubei area[J]. Geophysical and Geochemical Exploration, 2018, 42(1):199-205,219.
[16] 罗贤冬, 王伟, 安邦, 等. 安徽省潜山县地质背景、土壤类型对土壤有益微量元素含量的综合影响[J]. 华东地质, 2021, 42(2):210-216.
[16] Luo X D, Wang W, An B, et al. Comprehensive influence of geological background and soil type on the content of soil beneficial trace elements in Qianshan County,Anhui Province[J]. East China Geology, 2021, 42(2):210-216.
[17] 李樋, 刘小念, 刘洪, 等. 基于地质建造的土壤营养元素空间分布特征研究——以大凉山区为例[J]. 安全与环境工程, 2021, 28(6):127-137.
[17] Li T, Liu X N, Liu H, et al. Study on spatial distribution characteristics of soil nutrient elements based on geological construction—Take daliangshan region as an example[J]. Safety and Environmental Engineering, 2021, 28(6):127-137.
[18] 中国地质调查局南京地质调查中心. 长汀县水土流失综合地质调查报告[R]. 南京: 中国地质调查局南京地质调查中心, 2019.
[18] Nanjing Center, China Geological Survey. Comprehensive geological survey report on soil erosion in Changting County[R]. Nanjing: Nanjing Center,China Geological Survey, 2019.
[19] 陈国光, 刘红樱, 陈进全, 等. 福建长汀县水土流失的地质影响因素及防治对策[J]. 水文地质工程地质, 2020, 47(6):26-35.
[19] Chen G G, Liu H Y, Chen J Q, et al. Geological influence factors of soil erosion in Changting County,Fujian Province and the countermeasures to prevent and control[J]. Hydrogeology & Engineering Geology, 2020, 47(6):26-35.
[20] 中国地质调查局. DD2005-03生态地球化学评价样品分析技术要求(试行)[S]. 2005.
[20] China Geological Survey. DD2005-03 Technical requirements for analysis of eco-geochemical evaluation samples (Trial)[S]. 2005.
[21] Ahrens L H. A fundamental law of geochemistry[J]. Nature, 1953, 172:1148.
[22] Reimann C, Filzmoser P. Normal and lognormal data distribution in geochemistry:Death of a myth.Consequences for the statistical treatment of geochemical and environmental data[J]. Environmental Geology, 2000, 39(9):1001-1014.
[23] 侯青叶. 中国土壤地球化学参数[M]. 北京: 地质出版社, 2020.
[23] Hou Q Y. Soil geochemical dataset of China[M]. Beijing: Geological Publishing House, 2020.
[24] 唐志敏, 张晓东, 张明, 等. 新安江流域土壤元素地球化学特征:来自岩石建造类型的约束[J]. 华东地质, 2023, 44(2):172-185.
[24] Tang Z M, Zhang X D, Zhang M, et al. Geochemical characteristics of soil elements in Xin'an River Basin:Constraints from rock formation types[J]. East China Geology, 2023, 44(2):172-185.
[25] 商靖敏, 罗维, 吴光红, 等. 洋河流域不同土地利用类型土壤硒(Se)分布及影响因素[J]. 环境科学, 2015, 36(1):301-308.
[25] Shang J M, Luo W, Wu G H, et al. Spatial distribution of Se in soils from different land use types and its influencing factors within the Yanghe watershed,China[J]. Environmental Science, 2015, 36(1):301-308.
[26] 蒋勇军. 典型岩溶流域土地利用变化及其对土壤质量的影响——以云南小江流域为例[D]. 重庆: 西南师范大学, 2005.
[26] Jiang Y J. Land use change in typical Karst watershed and its impact on soil quality— A case study of Xiaojiang watershed in Yunnan Province[D]. Chongqing: Southwest University, 2005.
[27] 唐志敏, 白晓, 湛龙, 等. 福建省长汀县重点水土流失区土壤元素地球化学特征及其指示意义[J]. 华东地质, 2022. 43(3):324-335.
[27] Tang Z M, Bai X, Zhan L, et al. Geochemical characteristics and its indicative significance of soil elements in key soil erosive areas of Changting County,Fujian Province[J]. East China Geology, 2022, 43(3):324-335.
[28] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 22499—2008富硒稻谷[S]. 北京: 中国标准出版社, 2009.
[28] General Administration of Quality Supervision,Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. GB/T 22499—2008 Rich selenium paddy[S]. Beijing: Standards Press of China, 2009.
[29] 方如康. 环境学词典[M]. 北京: 科学出版社, 2003.
[29] Fang R K. Dictionary of environmental science[M]. Beijing: Science Press, 2003.
[30] 成杭新, 彭敏, 赵传冬, 等. 表生地球化学动力学与中国西南土壤中化学元素分布模式的驱动机制[J]. 地学前缘, 2019, 26(6):159-191.
doi: 10.13745/j.esf.sf.2019.11.28
[30] Cheng H X, Peng M, Zhao C D, et al. Epigenetic geochemical dynamics and driving mechanisms of distribution patterns of chemical elements in soil,Southwest China[J]. Earth Science Frontiers, 2019, 26(6):159-191.
[31] Négrel P, Sadeghi M, Ladenberger A, et al. Geochemical fingerprinting and source discrimination of agricultural soils at continental scale[J]. Chemical Geology, 2015, 396:1-15.
[32] 王锐, 邓海, 贾中民, 等. 硒在土壤—农作物系统中的分布特征及富硒土壤阈值[J]. 环境科学, 2020, 41(12):5571-5578.
[32] Wang R, Deng H, Jia Z M, et al. Distribution characteristics of selenium in a soil-crop system and the threshold of selenium-rich soils[J]. Environmental Science, 2020, 41(12):5571-5578.
[33] 成晓梦, 马荣荣, 彭敏, 等. 中国大宗农作物及根系土中硒的含量特征与富硒土壤标准建议[J]. 物探与化探, 2019, 43(6):1367-1372.
[33] Cheng X M, Ma R R, Peng M, et al. Characteristics of selenium in crops and roots in China and recommendations for selenium-enriched soil standards[J]. Geophysical and Geochemical Exploration, 2019, 43(6):1367-1372.
[34] Hawrylak-Nowak B. Comparative effects of selenite and selenate on growth and selenium accumulation in lettuce plants under hydroponic conditions[J]. Plant Growth Regulation, 2013, 70(2):149-157.
[35] Tolu J, Le Hécho I, Bueno M, et al. Selenium speciation analysis at trace level in soils[J]. Analytica Chimica Acta, 2011, 684(1/2):126-133.
[1] 杨贺平, 赵小静, 孙江军. 近40年黑龙江省两大平原土壤有机质时空变化规律[J]. 物探与化探, 2024, 48(4): 1103-1113.
[2] 廖启林, 黄顺生, 许伟伟, 崔晓丹, 金洋, 刘玲, 汪媛媛, 李文博, 周强. 江苏省里下河地区富硒土壤元素地球化学特征及其成因机制[J]. 物探与化探, 2024, 48(4): 1114-1124.
[3] 肖凯琦, 徐宏根, 戴亮亮, 李毅, 李凯. 凤凰县土壤—农作物系统中Cd含量及迁移富集特征[J]. 物探与化探, 2024, 48(4): 1136-1145.
[4] 张文斌, 周贤君, 侯翠霞, 王宁祖, 孙平原, 赵振琯, 何碧. 甘肃北山老君庙北金矿土壤地球化学特征及找矿前景[J]. 物探与化探, 2024, 48(4): 945-953.
[5] 谢岿锐, 宋旭锋, 周坤, 周余国, 佘中明, 唐鉴. 滇西南西盟—澜沧地区土壤稀土地球化学异常的发现及找矿意义[J]. 物探与化探, 2024, 48(3): 660-667.
[6] 高鹏利, 任大陆, 李朝辉, 冯志强, 苗洪运, 乔林, 王建武, 杨永亮, 张利明, 李光辉. 基于Boruta算法和GA优化混合地统计模型的土壤有机质空间分布预测[J]. 物探与化探, 2024, 48(3): 747-758.
[7] 韩冰, 黄勇, 李欢, 安永龙. 北京市房山区土壤重金属元素分布、富集特征及来源解析[J]. 物探与化探, 2024, 48(3): 820-833.
[8] 史敬涛, 刘俊建, 张军超, 王江玉龙, 姜禹戈, 王末, 李横飞, 杨文号, 颜翔锦. 浅山区典型小流域土壤重金属影响因素及来源分析[J]. 物探与化探, 2024, 48(3): 834-846.
[9] 余飞, 王锐, 周皎, 张风雷, 蒋玉莲, 张云逸, 朱世林. 典型汞矿区周边耕地土壤重金属来源解析与农作物健康风险评价[J]. 物探与化探, 2024, 48(3): 847-857.
[10] 蒋羽雄, 文美兰, 潘启明, 蒋柏昌, 王忠伟. 广西荔浦市土壤—农作物中重金属迁移转化及生态效应[J]. 物探与化探, 2024, 48(3): 858-867.
[11] 周雪妮, 曹亚廷, 计扬. 岷江上游干旱河谷区汶川段风化壳剖面元素地球化学特征[J]. 物探与化探, 2024, 48(3): 597-608.
[12] 李瑜, 张雨涵, 官开江, 鲍丽然. 酉阳油茶籽油营养安全品质、油茶含油率特征和立地土壤评价[J]. 物探与化探, 2024, 48(2): 521-526.
[13] 张宏伟, 杨恩林, 焦树林, 王贵云, 杨善进. 七星关区耕地土壤Ge地球化学特征及其与作物的吸收关系[J]. 物探与化探, 2024, 48(2): 534-544.
[14] 彭学锐, 陈翔, 周思裕. 广西梧州六堡茶茶叶及根系土中硒含量影响因素[J]. 物探与化探, 2024, 48(2): 545-554.
[15] 肖高强, 赵娟, 陈子万, 宋旭锋, 朱能刚. 基于地质大数据技术对云南土壤重金属地质高背景区的划定[J]. 物探与化探, 2024, 48(1): 216-227.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com