Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (4): 1136-1145    DOI: 10.11720/wtyht.2024.1333
  生态地质调查 本期目录 | 过刊浏览 | 高级检索 |
凤凰县土壤—农作物系统中Cd含量及迁移富集特征
肖凯琦(), 徐宏根(), 戴亮亮, 李毅, 李凯
中国地质调查局 长沙自然资源综合调查中心,湖南 长沙 410625
Cd in the soil-crop system in Fenghuang County: Content and migration and enrichment characteristics
XIAO Kai-Qi(), XU Hong-Gen(), DAI Liang-Liang, LI Yi, LI Kai
Changsha General Survey of Natural Resources Center, China Geological Survey, Changsha 410625, China
全文: PDF(3423 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

为了研究湘西州凤凰县土壤—农作物系统中重金属元素迁移富集特征,依托土地质量地球化学调查项目,系统采集了当地主要的120组农作物及根系土样品(50件猕猴桃,36件水稻,34件玉米),农作物样品测试As、Cd、Cr、Cu、Hg、Pb和Zn共7项指标,根系土样品测试pH值、Mn、Se、As、Cd、Cr、Cu、Hg、Ni、Pb、Zn和理化性质等共18项指标,分析研究区内土壤和农作物籽实重金属含量特征,采用多元线性回归、相关性分析等方法,开展Cd在土壤—农作物系统中迁移富集特征的研究。结果表明,研究区土壤以弱酸性为主,土壤中Cd含量高于湖南省背景值,Cr、Ni和Cu高值区主要分布于西南和东南部,Cd与pH呈西高东低的分布趋势。农作物籽实中重金属元素富集系数最高的元素为Cd、Zn和Cu,研究区土壤—农作物中Cd的迁移主要受土壤pH与质地影响,pH值越高,质地越细,Cd迁移能力越弱,此外其迁移能力一定程度上还受土壤中Mn、CaO和总碳含量影响。区域内猕猴桃重金属富集系数较低,适宜推广生产。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖凯琦
徐宏根
戴亮亮
李毅
李凯
关键词 凤凰土壤农作物迁移影响因素    
Abstract

To investigate the migration characteristics of heavy metals in the soil-crop system of Fenghuang County, Xiangxi Tujia and Miao Autonomous Prefecture, this study systematically collected 120 groups of local staple crop and root-soil samples (50 for kiwi fruit, 36 for rice, and 34 for corn). Agricultural crop samples were tested for seven indicators, including As, Cd, Cr, Cu, Hg, Pb, and Zn. Root soil samples were tested for 18 indicators, including pH, Mn, Se, As, Cd, Cr, Cu, Hg, Ni, Pb, Zn, and physicochemical properties. The test results were used to analyze the heavy metal contents of soil and crop seeds in the study area. Furthermore, the migration and enrichment of Cd in the soil-crop system were examined through multiple linear regression and correlation analysis. The results are as follows: (1) The study area is dominated by weakly acidic soil, with Cd content higher than the background value in Hunan Province. The high-value zones of Cr, Ni, and Cu are primarily distributed in the southwestern and southeastern portions of the study area. The Cd and pH in the soil show higher values in the west and lower values in the east; (2) In crop seeds, the three heavy metals with the highest enrichment coefficients are Cd, Zn, and Cu. The migration of Cd in the soil-crop system of the study area is principally influenced by soil pH and texture. A higher pH value and finer texture correspond to weaker migration of Cd. Additionally, Cd migration is affected to some extent by the contents of Mn, CaO, and total organic carbon in the soil. The relatively low heavy metal enrichment coefficient of kiwi fruit in the study area makes kiwi fruit suitable for production promotion.

Key wordsFenghuang County    soil    crop    migration    influencing factor
收稿日期: 2023-07-26      修回日期: 2023-10-07      出版日期: 2024-08-20
ZTFLH:  X53  
  X825  
基金资助:中国地质调查局地质调查项目(ZD20220214)
通讯作者: 徐宏根(1979-),男,正高级工程师,主要从事生态修复和遥感地质领域相关工作。Email:honggen_xu@163.com
作者简介: 肖凯琦(1997-),男,工程师,主要从事环境地球化学和土地质量地球化学调查工作。Emall:xiaokaiqi@mail.cgs.gov.cn
引用本文:   
肖凯琦, 徐宏根, 戴亮亮, 李毅, 李凯. 凤凰县土壤—农作物系统中Cd含量及迁移富集特征[J]. 物探与化探, 2024, 48(4): 1136-1145.
XIAO Kai-Qi, XU Hong-Gen, DAI Liang-Liang, LI Yi, LI Kai. Cd in the soil-crop system in Fenghuang County: Content and migration and enrichment characteristics. Geophysical and Geochemical Exploration, 2024, 48(4): 1136-1145.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1333      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I4/1136
Fig.1  研究区点位分布及地质图
元素 分析方法
As 原子荧光光谱法
Cr 电感耦合等离子体质谱法
Cd 电感耦合等离子体质谱法
Cu 电感耦合等离子体质谱法
Hg 原子荧光光谱法
Pb 电感耦合等离子体质谱法
Zn 电感耦合等离子体质谱法
Table 1  农作物籽实指标分析方法
指标 分析方法 检出限
As 原子荧光光谱法 0.2
Cd 电感耦合等离子体质谱法 0.02
Cr X 射线荧光光谱法 1.5
Cu 电感耦合等离子体质谱法 0.1
Hg 原子荧光光谱法 0.0005
Mn 电感耦合等离子体原子发射光谱法 0.5
Ni 电感耦合等离子体原子发射光谱法 0.2
Pb 电感耦合等离子体质谱法 1
Se 原子荧光光谱法 0.01
Zn 电感耦合等离子体质谱法 1
SiO2 X 射线荧光光谱法 0.05
Al2O3 X 射线荧光光谱法 0.03
TFe2O3 X 射线荧光光谱法 0.02
MgO 电感耦合等离子体原子发射光谱法 0.02
CaO 电感耦合等离子体原子发射光谱法 0.02
Na2O 电感耦合等离子体原子发射光谱法 0.02
TC 容量法 0.02
pH 离子选择电极法分析 0.01
Table 2  根系土指标分析方法及检出限
指标 均值 最小值 中位数 最大值 变异系数/% 湖南省土壤背景值[16] 超筛选值/% 超管控值/%
As 9.53 3.16 9 27.9 35.17 15.70 0 0
Cd 0.27 0.088 0.27 0.65 36.51 0.13 35 0
Cr 63.34 45 63.85 85.9 11.24 71.40 0 0
Cu 26.23 12.3 24.9 54.6 26.02 27.30 0.8
Hg 0.11 0.052 0.10 0.27 34.79 0.12 0 0
Ni 28.12 18.4 27.75 43.8 16.80 31.90 0
Pb 31.97 23.5 31.9 68.6 15.11 29.70 0 0
Zn 79.92 45.1 78.1 188 20.75 94.40 0
pH 5.85 3.98 5.61 8.16 20.43
Table 3  研究区土壤重金属元素参数统计(n=120)
Fig.2  研究区根系土壤重金属空间分布
元素 Mn SiO2 Al2O3 TFe2O3 MgO CaO Na2O TC pH
As 0.503** 0.144 0.180* 0.532** -0.109 -0.041 -0.468** -0.221* -0.132
Cd 0.127 -0.376** 0.067 0.185* 0.492** 0.419** 0.196* 0.569** 0.704**
Cr 0.412** -0.307** 0.155 0.762** 0.429** 0.158 -0.285** 0.146 0.181*
Cu -0.079 -0.470** 0.376** 0.370** 0.649** 0.236** 0.103 0.552** 0.423**
Hg 0.101 -0.167 -0.054 0.038 0.007 0.308** -0.059 0.350** 0.274**
Ni 0.189* -0.398** 0.497** 0.716** 0.598** -0.036 -0.055 0.162 0.12
Pb 0.098 0.096 0.117 0.246** -0.036 -0.232* -0.212* -0.043 0.184*
Zn 0.1 -0.425** 0.498** 0.531** 0.408** 0.033 0.016 0.190* 0.108
Table 4  研究区土壤重金属与理化性质相关系数
元素 作物 检出件数 均值 最小值 中位数 最大值 标准限值[27] 超标率/%
As 玉米 1 0.017 0.017 0.017 0.017 0.5 0
水稻 36 0.205 0.028 0.226 0.365 0.5 0
猕猴桃 50 0.002 0.0011 0.0016 0.002
Cd 玉米 34 0.057 0.003 0.0185 0.27 0.1 29.41
水稻 36 0.102 0.004 0.023 0.56 0.2 16.67
猕猴桃 50 0.003 0.001 0.003 0.008 0.05 0
Cr 玉米 34 0.054 0.034 0.044 0.21 1 0
水稻 36 0.041 0.028 0.038 0.11 1 0
猕猴桃 50 0.010 0.007 0.01 0.015
Cu 玉米 34 2.085 0.84 1.89 3.97
水稻 36 2.667 0.56 2.555 4.96
猕猴桃 50 0.843 0.35 0.84 1.58
Pb 玉米 34 0.036 0.015 0.032 0.071 0.2 0
水稻 33 0.017 0.01 0.015 0.033 0.2 0
猕猴桃 50 0.016 0.002 0.007 0.16 0.1 4.00
Hg 玉米 0 0.02
水稻 34 0.011 0.0031 0.00925 0.026 0.02 2.94
猕猴桃 6 0.00032 0.0003 0.00032 0.00036
Zn 玉米 34 20.524 15.7 20.05 26
水稻 36 17.433 14.6 17.25 20.8
猕猴桃 50 0.608 0.26 0.585 0.93
Table 5  研究区不同农作物重金属元素含量特征
Fig.3  研究区猕猴桃、水稻、玉米富集系数
富集系数 Mn Se SiO2 Al2O3 TFe2O3 MgO CaO Na2O TC pH
BCF猕猴桃 -0.253 -0.249 0.153 -0.038 -0.324* -0.361* -0.273 -0.009 -0.106 -0.363**
BCF水稻 -0.412* -0.303 0.535** 0.213 -0.06 -0.086 -0.413* 0.021 -0.341* -0.733**
BCF玉米 0.086 -0.005 0.137 -0.121 0.024 -0.454** -0.202 -0.099 -0.367* -0.551**
Table 6  研究区Cd富集系数与理化指标相关系数
Fig.4  土壤中Mn、CaO和TC与Cd富集系数散点图
[1] 陈文轩, 李茜, 王珍, 等. 中国农田土壤重金属空间分布特征及污染评价[J]. 环境科学, 2020, 41(6):2822-2833.
[1] Chen W X, Li Q, Wang Z, et al. Spatial distribution characteristics and pollution evaluation of heavy metals in arable land soil of China[J]. Environmental Science, 2020, 41(6):2822-2833.
[2] 中华人民共和国环境保护部, 中华人民共和国国土资源部. 全国土壤污染状况调查公报[R]. 北京: 环境保护部国土资源部, 2014.
[2] Ministry of Environmental Protection, Ministry of Land and Resources of the People's Republic of China. Bulletin of national soil pollution survey[R]. Beijing: Ministry of Environmental Protection,Land and Resources, 2014.
[3] 陈雅丽, 翁莉萍, 马杰, 等. 近十年中国土壤重金属污染源解析研究进展[J]. 农业环境科学学报, 2019, 38(10):2219-2238.
[3] Chen Y L, Weng L P, Ma J, et al. Review on the last ten years of research on source identification of heavy metal pollution in soils[J]. Journal of Agro-Environment Science, 2019, 38(10):2219-2238.
[4] 刘书淮, 王德伟, 施泽明, 等. 城乡融合区土壤元素地球化学特征与源解析:以天府新区青龙片区为例[J]. 环境科学, 2022, 43(3):1535-1545.
[4] Liu S H, Wang D W, Shi Z M, et al. Geochemical characteristics and source apportionment of soil elements in an urban-rural integration area:A case study in the Qinglong area of Tianfu new district[J]. Environmental Science, 2022, 43(3):1535-1545.
[5] 陈卫平, 杨阳, 谢天, 等. 中国农田土壤重金属污染防治挑战与对策[J]. 土壤学报, 2018, 55(2):261-272.
[5] Chen W P, Yang Y, Xie T, et al. Challenges and countermeasures for heavy metal pollution control in farmlands of China[J]. Acta Pedologica Sinica, 2018, 55(2):261-272.
[6] 杨忠芳. 保护国土生态环境安全永续利用资源——解读《广西土地质量地球化学评价报告(2016)》[J]. 南方国土资源, 2017(2):17-19.
[6] Yang Z F. Protecting the land ecological environment,safe and sustainable utilization of resources—Interpretation of Guangxi land quality geochemical evaluation report (2016)[J]. Southern Land Resources, 2017(2):17-19.
[7] 宋春然, 何锦林, 谭红, 等. 贵州省农业土壤重金属污染的初步评价[J]. 贵州农业科学, 2005, 33(2):13-16.
[7] Song C R, He J L, Tan H, et al. Primary appraisal for heavy metals pollution in farm soils of Guizhou Province[J]. Guizhou Agricultural Sciences, 2005, 33(2):13-16.
[8] 赵东杰, 王学求. 滇黔桂岩溶区河漫滩土壤重金属含量、来源及潜在生态风险[J]. 中国环境科学, 2020, 40(4):1609-1619.
[8] Zhao D J, Wang X Q. Distribution,sources and potential ecological risk of heavy metals in the floodplain soils of the Karst Area of Yunnan,Guizhou,Guangxi[J]. China Environmental Science, 2020, 40(4):1609-1619.
[9] 王锐, 胡小兰, 张永文, 等. 重庆市主要农耕区土壤Cd生物有效性及影响因素[J]. 环境科学, 2020, 41(4):1864-1870.
[9] Wang R, Hu X L, Zhang Y W, et al. Bioavailability and influencing factors of soil Cd in the major farming areas of Chongqing[J]. Environmental Science, 2020, 41(4):1864-1870.
[10] 盛维康, 侯青叶, 杨忠芳, 等. 湘江水系沉积物重金属元素分布特征及风险评价[J]. 中国环境科学, 2019, 39(5):2230-2240.
[10] Sheng W K, Hou Q Y, Yang Z F, et al. Distribution characteristics and ecological risk assessment of heavy metals in sediments from Xiang River[J]. China Environmental Science, 2019, 39(5):2230-2240.
[11] 宋波, 王佛鹏, 周浪, 等. 广西高镉异常区水田土壤Cd含量特征及生态风险评价[J]. 环境科学, 2019, 40(5):2443-2452.
[11] Song B, Wang F P, Zhou L, et al. Cd content characteristics and ecological risk assessment of paddy soil in high cadmium anomaly area of Guangxi[J]. Environmental Science, 2019, 40(5):2443-2452.
[12] 中华人民共和国生态环境部. 2019中国生态环境状况公报[R]. 北京: 中华人民共和国生态环境部, 2019.
[12] Ministry of Ecology and Environment of the People's Republic of China. 2019 China ecological environment status bulletin[R]. Beijing: Ministry of Ecology and Enviroment, People's Republic of China, 2019.
[13] 孔学夫, 刘二冬, 沈燕, 等. 湘西不同植被类型土壤重金属分布及相关性研究[J]. 中南林业科技大学学报, 2020, 40(2):120-130.
[13] Kong X F, Liu E D, Shen Y, et al. Study on distribution and correlation of heavy metals in soils of different vegetation types in Xiangxi autonomous prefecture[J]. Journal of Central South University of Forestry & Technology, 2020, 40(2):120-130.
[14] 中华人民共和国国土资源部. DZ/T 0295—2016 土地质量地球化学评价规范[S]. 北京: 地质出版社, 2016.
[14] Ministry of Land and Resources,People's Republic of China. DZ/T 0295—2016 Code for geochemical evaluation of land quality[S]. Beijing: Geological Publishing House, 2016.
[15] 中国地质调查局. DD2005-03 生态地球化学评价样品分析技术要求(试行)[S]. 2005.
[15] China Geological Survey. DD2005-03 Technical requirements for sample analysis for ecogeochemical evaluation (Trial)[S]. 2005.
[16] 中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990.
[16] China Environmental Monitoring Station. Background values of soil elements in China[M]. Beijing: China Environmental Science Press, 1990.
[17] 中华人民共和国生态环境部. GB 15618—2018 土壤环境质量农用地土壤污染风险管控标准(试行)[S]. 2018.
[17] Ministry of Ecology and Environment,People's Republic of China. GB 15618—2018 Soil environmental quality standard for soil pollution risk control of agricultural land (Trial)[S]. 2018.
[18] 李良忠, 杨彦, 蔡慧敏, 等. 太湖流域某农业活动区农田土壤重金属污染的风险评价[J]. 中国环境科学, 2013, 33(S1):60-65.
[18] Li L Z, Yang Y, Cai H M, et al. Risk assessment of heavy metal pollution in farmland soil in an agricultural activity area of Taihu Lake Basin[J]. China Environmental Science, 2013, 33(S1):60-65.
[19] 苏业旺, 刘威杰, 毛瑶, 等. 华中地区夏季PM2.5中水溶性离子污染特征及来源分析[J]. 环境科学, 2022, 43(2):619-628.
[19] Su Y W, Liu W J, Mao Y, et al. Characteristics and source analysis of water-soluble inorganic pollution in PM2.5 during summer in central China[J]. Environmental Science, 2022, 43(2):619-628.
[20] 肖凯琦, 董好刚, 郭军, 等. 湖南省汨罗市耕地土壤养分空间变异特征研究[J]. 华南地质, 2021, 37(4):369-376.
[20] Xiao K Q, Dong H G, Guo J, et al. Spatial variability of cultivated soil nutrients in Miluo city,Hunan Province[J]. South China Geology, 2021, 37(4):369-376.
[21] 尚二萍, 许尔琪, 张红旗, 等. 中国粮食主产区耕地土壤重金属时空变化与污染源分析[J]. 环境科学, 2018, 39(10):4670-4683.
[21] Shang E P, Xu E Q, Zhang H Q, et al. Spatial-temporal trends and pollution source analysis for heavy metal contamination of cultivated soils in five major grain producing regions of China[J]. Environmental Science, 2018, 39(10):4670-4683.
[22] 柳云龙, 章立佳, 韩晓非, 等. 上海城市样带土壤重金属空间变异特征及污染评价[J]. 环境科学, 2012, 33(2):599-605.
[22] Liu Y L, Zhang L J, Han X F, et al. Spatial variability and evaluation of soil heavy metal contamination in the urban-transect of Shanghai[J]. Environmental Science, 2012, 33(2):599-605.
[23] 肖凯琦, 许安, 郭军, 等. 洞庭湖南缘农田土壤重金属特征及源解析[J]. 环境科学, 2023, 44(2):932-943.
[23] Xiao K Q, Xu A, Guo J, et al. Characteristics and source analysis of heavy metals in farmland soil on the south of Dongting Lake[J]. Environmental Science, 2023, 44(2):932-943.
[24] Jin C, Nan Z R, Wang H C, et al. Effect of Cd stress on the bioavailability of Cd and other mineral nutrition elements in broad bean grown in a loess subsoil amended with municipal sludge compost[J]. Environmental Science and Pollution Research International, 2018, 25(8):7418-7432.
doi: 10.1007/s11356-017-0994-y pmid: 29280101
[25] Zeng F F, Wei W, Li M S, et al. Heavy metal contamination in rice-producing soils of Hunan Province,China and potential health risks[J]. International Journal of Environmental Research and Public Health, 2015, 12(12):15584-15593.
[26] 郭颖, 李玉冰, 薛生国, 等. 广西某赤泥堆场周边土壤重金属污染风险[J]. 环境科学, 2018, 39(7):3349-3357.
[26] Guo Y, Li Y B, Xue S G, et al. Risk analysis of heavy metal contamination in farmland soil around a bauxite residue disposal area in Guangxi[J]. Environmental Science, 2018, 39(7):3349-3357.
[27] 国家卫生健康委员会, 国家市场监督管理总局. GB 2762—2022食品安全国家标准食品中污染物限量[S]. 北京: 中国标准出版社, 2022.
[27] National Health Commission, State Administration for Market Regulation. GB 2762—2022 Food safety national standard food pollutant limits[S]. Beijing: Standards Press of China, 2022.
[28] 余垚, 罗丽韵, 刘哲, 等. 青菜中镉的吸收和累积对硒的响应规律[J]. 环境科学, 2020, 41(2):962-969.
[28] Yu Y, Luo L Y, Liu Z, et al. Accumulation and translocation of Cd in brassica Rapa under the influence of selenium[J]. Environmental Science, 2020, 41(2):962-969.
[29] 陈小华, 沈根祥, 白玉杰, 等. 不同作物对土壤中Cd的富集特征及低累积品种筛选[J]. 环境科学, 2019, 40(10):4647-4653.
[29] Chen X H, Shen G X, Bai Y J, et al. Accumulation of Cd in different crops and screening of low-Cd accumulation cultivars[J]. Environmental Science, 2019, 40(10):4647-4653.
[30] 刘意章, 肖唐付, 熊燕, 等. 西南高镉地质背景区农田土壤与农作物的重金属富集特征[J]. 环境科学, 2019, 40(6):2877-2884.
[30] Liu Y Z, Xiao T F, Xiong Y, et al. Accumulation of heavy metals in agricultural soils and crops from an area with a high geochemical background of cadmium,southwestern China[J]. Environmental Science, 2019, 40(6):2877-2884.
[31] 郭超, 文宇博, 杨忠芳, 等. 典型岩溶地质高背景土壤镉生物有效性及其控制因素研究[J]. 南京大学学报:自然科学, 2019, 55(4):678-687.
[31] Guo C, Wen Y B, Yang Z F, et al. Factors controlling the bioavailability of soil cadmium in typical Karst areas with high geogenic background[J]. Journal of Nanjing University:Natural Science, 2019, 55(4):678-687.
[32] Sebei A, Helali M A, Oueslati W, et al. Bioavailability of Pb, Zn,Cu,Cd,Ni and Cr in the sediments of the Tessa River:A mining area in the North-West Tunisia[J]. Journal of African Earth Sciences, 2018, 137:1-8.
[33] 杨伟光, 陈卫平, 杨阳, 等. 新疆某矿冶区周边土壤重金属生物有效性与生态风险评价[J]. 环境工程学报, 2019, 13(8):1930-1939.
[33] Yang W G, Chen W P, Yang Y, et al. Bioavailability and ecological risk assessment of heavy metals in soils around a mining area in Xinjiang,China[J]. Chinese Journal of Environmental Engineering, 2019, 13(8):1930-1939.
[34] Yang Q, Yang Z F, Zhang Q Z, et al. Ecological risk assessment of Cd and other heavy metals in soil-rice system in the Karst areas with high geochemical background of Guangxi,China[J]. Science China Earth Sciences, 2021, 64(7):1126-1139.
[35] 沈体忠, 朱明祥, 肖杰. 天门市土壤—水稻系统重金属迁移积累特征及其健康风险评估[J]. 土壤通报, 2014, 45(1):221-226.
[35] Shen T Z, Zhu M X, Xiao J. Characteristics of migration and accumulation of heavy metals in SoilRice system of Tianmen and its health risk assessment[J]. Chinese Journal of Soil Science, 2014, 45(1):221-226.
[36] 冯志刚, 刘威, 张兰英, 等. 贫Cd碳酸盐岩发育土壤Cd的富集与超常富集现象——以贵州岩溶区为例[J]. 地质通报, 2022, 41(4):533-544.
[36] Feng Z G, Liu W, Zhang L Y, et al. Enrichment and supernormal enrichment phenomenon of Cd in soils developed on Cd-poor carbonate rocks:A case study of Karst areas in Guizhou,China[J]. Geological Bulletin of China, 2022, 41(4):533-544.
[37] 杨琼, 杨忠芳, 季峻峰, 等. 广西贵港岩溶地质高背景区富含铁锰结核土壤的矿物学与重金属地球化学特征[J]. 现代地质, 2021, 35(5):1450-1458.
[37] Yang Q, Yang Z F, Ji J F, et al. Characteristics of mineralogy and heavy metal geochemistry in ferromanganese nodule rich soils with high geochemical background from Guigang,Guangxi[J]. Geoscience, 2021, 35(5):1450-1458.
[38] Wang J, Wang P M, Gu Y, et al. Iron-manganese (oxyhydro)oxides,rather than oxidation of sulfides,determine mobilization of Cd during soil drainage in paddy soil systems[J]. Environ Sci Technol, 2019, 53(5):2500-2508.
[39] 王锐, 邓海, 贾中民, 等. 典型喀斯特地区土壤—作物系统镉的富集特征与污染评价[J]. 环境科学, 2021, 42(2):941-951.
[39] Wang R, Deng H, Jia Z M, et al. Characteristics of cadmium enrichment and pollution evaluation of a soil-crop system in a typical Karst Area[J]. Environmental Science, 2021, 42(2):941-951.
[40] Yu H Y, Liu C P, Zhu J S, et al. Cadmium availability in rice paddy fields from a mining area:The effects of soil properties highlighting iron fractions and pH value[J]. Environmental Pollution, 2016, 209:38-45.
[41] 张加文, 田彪, 罗晶晶, 等. 土壤重金属生物可利用性影响因素及模型预测[J]. 环境科学, 2022, 43(7):3811-3824.
[41] Zhang J W, Tian B, Luo J J, et al. Effect factors and model prediction of soil heavy metal bioaccessibility[J]. Environmental Science, 2022, 43(7):3811-3824.
[42] 王锐, 余京, 李瑜, 等. 地块尺度重金属污染风险耕地安全利用区划方法[J]. 环境科学, 2022, 43(8):4190-4198.
[42] Wang R, Yu J, Li Y, et al. Zoning and safe utilization method of heavy metal contaminated cultivated land at block scale[J]. Environmental Science, 2022, 43(8):4190-4198.
[43] 段燕, 汪丙国, 王慧敏, 等. 冲积和湖积成因土壤Cd的吸附特征:以安徽省当涂县为例[J]. 地球科学, 2021, 46(4):1490-1504.
[43] Duan Y, Wang B G, Wang H M, et al. Adsorption characteristics of Cd in alluvial and lacustrine soils:A case study in Dangtu County,Anhui Province[J]. Earth Science, 2021, 46(4):1490-1504.
[1] 杨贺平, 赵小静, 孙江军. 近40年黑龙江省两大平原土壤有机质时空变化规律[J]. 物探与化探, 2024, 48(4): 1103-1113.
[2] 廖启林, 黄顺生, 许伟伟, 崔晓丹, 金洋, 刘玲, 汪媛媛, 李文博, 周强. 江苏省里下河地区富硒土壤元素地球化学特征及其成因机制[J]. 物探与化探, 2024, 48(4): 1114-1124.
[3] 唐志敏, 张晓东, 梅丽辉, 湛龙, 陈国光, 刘红樱, 周墨, 张明, 张洁. 水土流失区土壤硒、锌地球化学特征及其生物有效性——以福建省长汀县为例[J]. 物探与化探, 2024, 48(4): 1125-1135.
[4] 张文斌, 周贤君, 侯翠霞, 王宁祖, 孙平原, 赵振琯, 何碧. 甘肃北山老君庙北金矿土壤地球化学特征及找矿前景[J]. 物探与化探, 2024, 48(4): 945-953.
[5] 谢岿锐, 宋旭锋, 周坤, 周余国, 佘中明, 唐鉴. 滇西南西盟—澜沧地区土壤稀土地球化学异常的发现及找矿意义[J]. 物探与化探, 2024, 48(3): 660-667.
[6] 高鹏利, 任大陆, 李朝辉, 冯志强, 苗洪运, 乔林, 王建武, 杨永亮, 张利明, 李光辉. 基于Boruta算法和GA优化混合地统计模型的土壤有机质空间分布预测[J]. 物探与化探, 2024, 48(3): 747-758.
[7] 齐娟娟. 基于微动的千米深度勘探关键影响因素[J]. 物探与化探, 2024, 48(3): 777-785.
[8] 韩冰, 黄勇, 李欢, 安永龙. 北京市房山区土壤重金属元素分布、富集特征及来源解析[J]. 物探与化探, 2024, 48(3): 820-833.
[9] 史敬涛, 刘俊建, 张军超, 王江玉龙, 姜禹戈, 王末, 李横飞, 杨文号, 颜翔锦. 浅山区典型小流域土壤重金属影响因素及来源分析[J]. 物探与化探, 2024, 48(3): 834-846.
[10] 余飞, 王锐, 周皎, 张风雷, 蒋玉莲, 张云逸, 朱世林. 典型汞矿区周边耕地土壤重金属来源解析与农作物健康风险评价[J]. 物探与化探, 2024, 48(3): 847-857.
[11] 蒋羽雄, 文美兰, 潘启明, 蒋柏昌, 王忠伟. 广西荔浦市土壤—农作物中重金属迁移转化及生态效应[J]. 物探与化探, 2024, 48(3): 858-867.
[12] 周雪妮, 曹亚廷, 计扬. 岷江上游干旱河谷区汶川段风化壳剖面元素地球化学特征[J]. 物探与化探, 2024, 48(3): 597-608.
[13] 李瑜, 张雨涵, 官开江, 鲍丽然. 酉阳油茶籽油营养安全品质、油茶含油率特征和立地土壤评价[J]. 物探与化探, 2024, 48(2): 521-526.
[14] 张宏伟, 杨恩林, 焦树林, 王贵云, 杨善进. 七星关区耕地土壤Ge地球化学特征及其与作物的吸收关系[J]. 物探与化探, 2024, 48(2): 534-544.
[15] 彭学锐, 陈翔, 周思裕. 广西梧州六堡茶茶叶及根系土中硒含量影响因素[J]. 物探与化探, 2024, 48(2): 545-554.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com