Please wait a minute...
E-mail Alert Rss
 
物探与化探  2021, Vol. 45 Issue (5): 1208-1216    DOI: 10.11720/wtyht.2021.0388
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
高放废物地质处置算井子地段地质条件适宜性研究
蒋实1(), 罗辉2(), 陈伟明2, 李亚伟2, 金远新2
1.中国自然资源航空物探遥感中心,北京 100083
2.核工业北京地质研究院 中核高放废物地质处置评价重点实验室,北京 100029
Suitability of geological conditions in Suanjingzi area for the disposal of high-level radioactive wastes
JIANG Shi1(), LUO Hui2(), CHEN Wei-Ming2, LI Ya-Wei2, JIN Yuan-Xin2
1. China Aero Geophysical Survey and Remote Sensing Center for Natural and Resources,Beijing 100083, China
2. CNNC Key Laboratory on Geological Disposal of High-level Radioactive Waste, Beijing Research Institute of Uranium Geology, Beijing 100029, China
全文: PDF(4505 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

在算井子地段开展地表地质特征、深部地质特征研究和三维地质建模等,初步查明了该地段花岗岩体的岩性和构造分布特征,得出如下认识:算井子地段主体岩性为花岗闪长岩,出露面积约176 km2,深度超过2 km,花岗岩体呈岩基状产出,总体呈NE—SW向分布,与研究区主构造线方向一致。花岗岩岩性单一,岩体深部完整性好,岩石蚀变程度低。研究区共有9条断裂,基本发育在岩体里面,倾角较陡。花岗岩岩体内可筛选出一面积大于31 km2岩块,岩性单一、容积足够大、完整性好,或可用作为未来高放废物处置库的候选场址。总体上,算井子地段作为高放废物地质处置预选地段,地质条件适宜性较好。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蒋实
罗辉
陈伟明
李亚伟
金远新
关键词 高放废物地质处置算井子地段地质条件地质建模    
Abstract

Based on investigations of geological characteristics of ground surface and deep parts and three-dimensional geological modeling, this study preliminarily ascertains the lithology of rock masses and the spatial distribution characteristics of faults in the Suanjingzi area, obtaining and the following understanding. In terms of lithology, the Suanjingzi area mainly consists of granodiorites with an exposed area of about 176 km2 and a depth of more than 2 km. The granites occur in the form of batholith and are generally distributed in the NE-SW trending, which is consistent with the direction of the main tectonic line in the study area. Meanwhile, they feature single lithology, high integrity of deep rock masses, and slight rock alteration. There are nine faults in the study area in total. They have roughly developed in rock masses and have steep dip angles. A rock mass with an area of greater than 31 km2 can be selected from the granites, which has single lithology, large enough volume, and high integrity and maybe used as a candidate site of the disposal repository of high-level radioactive wastes in the future. Overall, the Suanjingzi area has suitable geological conditions as a pre-selected site for the geological disposal of high-level radioactive wastes.

Key wordsgeological disposal of high-level radioactive wastes    Suanjingzi area    geological conditions    geological modeling
收稿日期: 2021-06-14      修回日期: 2021-07-26      出版日期: 2021-10-20
ZTFLH:  P587  
  P597.3  
基金资助:国防科工局核设施退役及放射性废物治理专项项目(科工二司【2019】1496号)
通讯作者: 罗辉
作者简介: 蒋实(1984-),女,工程师,环境地球化学方向。Email: 45493666@qq.com
引用本文:   
蒋实, 罗辉, 陈伟明, 李亚伟, 金远新. 高放废物地质处置算井子地段地质条件适宜性研究[J]. 物探与化探, 2021, 45(5): 1208-1216.
JIANG Shi, LUO Hui, CHEN Wei-Ming, LI Ya-Wei, JIN Yuan-Xin. Suitability of geological conditions in Suanjingzi area for the disposal of high-level radioactive wastes. Geophysical and Geochemical Exploration, 2021, 45(5): 1208-1216.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2021.0388      或      https://www.wutanyuhuatan.com/CN/Y2021/V45/I5/1208
Fig.1  算井子地段地质图
地层名称及代号 出露面积/km2 面积占比/%
第四系全新统(Qhapl) 133.52 28.91
白垩系下统赤金堡组(K1c) 96.35 20.86
石炭系下统白山组(C1b) 29.37 6.36
志留系中统公婆泉群(S2gp) 13.52 2.93
青白口系圆藻山群大豁落山组(Qbd) 8.44 1.83
Table 1  算井子地段各地层出露情况统计
编号 性质 长度/km 产状
倾向 倾角
F0 压扭性 8.5 311°~322° 68°~86°
F1 压扭性 5.0 26°~35° 75°~85°
F2 压扭性 5.5 227°~247° 57°~72°
F3 压扭性 5.3 151° 65°
F4 压扭性 7.0 322°~338° 67°~72°
F5 压扭性 19.0 293° 53°
F6 压扭性 20.0 325° 83°
F7 压扭性 4.5 220°~230° 55°~65°
F8 压扭性 3.8 32°~57° 58°~82°
Table 2  算井子地段断裂构造特征
Fig.2  AMT探测剖面电阻率二维反演地电断面
Fig.3  BS22、BS23钻孔岩心节理裂隙倾角统计
Fig.4  BS22、BS23钻孔岩心裂隙发育程度随深度的变化
Jv/(条·m-3) <3 3~10 10~20 20~35 >35
Kv >0.75 0.75~0.55 0.55~0.35 0.35~0.15 <0.15
Table 3  JvKv对照值
岩石完整程度 Kv BS22所占比例/% BS23 所占比例/%
完整 >0.75 77.9 61.3
较完整 0.75~0.55 7.4 17.9
较破碎 0.55~0.35 10.5 9.4
破碎 0.35~0.15 4.2 11.3
极破碎 ≤0.15 0 0
Table 4  BS22、BS23钻孔岩石完整程度统计
Fig.5  算井子地段三维断裂模型
Fig.6  算井子地段三维地质模型
Fig.7  算井子岩体与断裂的空间展布关系(图例说明同图6)
Fig.8  潜在场址的空间位置(图例说明同图6)
[1] Savage D. The Scientific and regulatory basis for the geological disposal of radioactive waste[M]. Chichester: John Wiley and Sons, 1995.
[2] 潘自强, 沈文权. 2020年前我国核能发展的策略和目标研究[J]. 铀矿地质, 2004, 20(5):257-259.
[2] Pan Z Q, Shen W Q. Tactics and targets for nuclear energy development in China by 2020[J]. Uranium Geology, 2004, 20(5):257-259.
[3] 潘自强, 钱七虎. 高放废物地质处置战略研究[M]. 北京: 原子能出版社, 2009.
[3] Pan Z Q, Qian Q H. Strategic research on geological disposal of high-level radioactive waste [M]. Beijing: Atomic Energy Press, 2009.
[4] 王驹. 高放废物地质处置: 进展与挑战[J]. 中国工程科学, 2008, 10(3):58-65.
[4] Wang J. Geological disposal of high level radio active waste: Progress and challenges[J]. Engineering Science, 2008, 10(3):58-65.
[5] 王驹, 陈伟明, 苏锐, 等. 高放废物地质处置及其若干关键科学问题[J]. 岩石力学与工程学报, 2006, 25(4):801-812.
[5] Wang J, Chen W M, Su R, et al. Geological disposal of high-level radioactive waste and its key scientific issues[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(4):801-812.
[6] 王驹, 徐国庆, 郑华铃, 等. 中国高放废物地质处置研究进展1985~2004[J]. 世界核地质科学, 2005, 22(1):5-16.
[6] Wang J, Xu G Q, Zheng H L, et al. Geological disposal of high level radioactive waste in China: Progress during 1985~2001[J]. World Nuclear Geoscience, 2005, 22(1):5-16.
[7] 苏锐, 程琦福, 王驹, 等. 我国高放废物地质处置库场址筛选总体技术思路探讨[J]. 世界核地质科学, 2011, 28(1):45-51.
[7] Su R, Cheng Q F, Wang J, et al. Discussion on technical ideas of site selection of geological disposal repository for high-level radioactive waste in China[J]. World Nuclear Geoscience, 2011, 28(1):45-51.
[8] 王驹, 郭永海, 陈伟明, 等. 高放废物地质处置甘肃北山预选区选址和场址评价研究[R]. 北京:核工业北京地质研究院, 2007.
[8] Wang J, Guo Y H, Chen W M, et al. Study on the site selection and site evaluation of the geological disposal of high-level radioactive waste in Beishan pre-selection area, Gansu [R]. Beijing: Beijing Geological Research Institute of Nuclear Industry, 2007.
[9] 王驹. 中国高放废物地质处置21世纪进展[J]. 原子能科学技术, 2019, 53(10):2072-2082.
[9] Wang J. Progress of geological disposal of high-level radioactive waste in China in the 21st century[J]. Atomic Energy Science and Technology, 2019, 53(10):2072-2082.
[10] 王驹, 金远新, 陈伟明, 等. 中国高放废物地质处置库场址区域筛选[R]. 北京:核工业北京地质研究院, 2009.
[10] Wang J, Jin Y X, Chen W M, et al. Site selection of geological repository for high-level radioactive waste in China [R]. Beijing: Beijing Geological Research Institute of Nuclear Industry, 2009.
[11] 罗辉, 王驹, 蒋实, 等. 高放废物地质处置新场岩体三维地质模型构建与应用[J]. 物探与化探, 2019, 43(3):568-575.
[11] Luo H, Wang J, Jiang S, et al. Construction and application of three-dimensional geological model in Xinchang Block for high-level radioactive waste disposal[J]. Geophysical and Geochemical Exploration, 2019, 43(3):568-575.
[12] 罗辉, 王驹, 蒋实, 等. 高放废物地质处置地下实验室新场候选场址三维地质建模[J]. 铀矿地质, 2017, 33(3):178-183.
[12] Luo H, Wang J, Jiang S, et al. Study on 3D geological modeling of Xinchang potential underground laboratory site for high-level radioactive waste disposal[J]. Uranium Geology, 2017, 33(3):178-183.
[13] 赵宏刚, 王驹, 杨春和, 等. 甘肃北山旧井地段高放废物处置库深度初步探讨[J]. 岩石力学与工程学报, 2007(S2):3966-3973.
[13] Zhao H G, Wang J, Yang C H, et al. Preliminary discussion on depth for high-level radioactive waste repository in Jiujing block,Beishan area,Gansu Province[J]. Chinese Journal of Rock Mechanics and Engineering, 2007(S2):3966-3973.
[14] 王锡勇, 李冬伟, 成功, 等. 高放废物地质处置的岩体深部结构面特征研究——以甘肃北山高放废物地质处置地下实验室工程为例[J]. 物探与化探, 2018, 42(3):481-490.
[14] Wang X Y, Li D W, Cheng G, et al. Geological disposal of high-level radioactive wastebase to study the structural plane of deep rock mass:A case study of geological disposal of high-level radioactive waste used in the underground research laboratory of Gansu Beishan area[J]. Geophysical and Geochemical Exploration, 2018, 42(3):481-490.
[15] 陈伟明, 王驹, 赵宏刚, 等. 高放废物地质处置北山预选区新场地段地质特征[J]. 岩石力学与工程学报, 2007 (S2):4000-4006.
[15] Chen W M, Wang J, Zhao H G, et al. Geological characters of Xinchang section in pre-selected beishan region for high-level radioactive waste disposal[J]. Chinese Journal of Rock Mechanics and Engineering, 2007(S2):4000-4006.
[16] 赵宏刚, 梁积伟, 王驹, 等. 甘肃北山南带沙枣园复式岩体年代学、地球化学特征及其构造意义[J]. 地质学报, 2020, 94(2):396-425.
[16] Zhao H G, Liang J W, Wang J, et al. Geochronology, geochemical characteristics and tectonic significance of the Shazaoyuan Composite Pluton in the sounthern Beishan Mountains, Gansu Province, China[J]. Acta Geologica Sinica, 2020, 94(2):396-425.
[17] 赵宏刚, 梁积伟, 王驹, 等. 甘肃北山算井子埃达克质花岗岩年代学、地球化学特征及其构造意义[J]. 地质学报, 2019, 93(2):329-352.
[17] Zhao H G, Liang J W, Wang J, et al. Geochronology and geochemical characteristics of the Suanjingzi adakitic granites in the Beishan Mountains, Gansu Province, China, and their tectonic significance[J]. Acta Geologica Sinica, 2019, 93(2):329-352.
doi: 10.1111/acgs.2019.93.issue-S1
[18] GB 50218—2014工程岩体分级标准[S]. 2014.
[18] GB 50218—2014 Engineering rock mass classification standards[S]. 2014.
[1] 刘豹, 杨宇山, 刘天佑. 铜绿山矿田成矿远景预测及三维地质模型[J]. 物探与化探, 2023, 47(4): 906-915.
[2] 孙海川. 兰州新区西部恐龙园区块地热地质条件分析[J]. 物探与化探, 2022, 46(6): 1411-1418.
[3] 汪文刚, 李凯. 基于GOCAD软件的多源地质勘探数据接口开发[J]. 物探与化探, 2022, 46(6): 1534-1539.
[4] 罗辉, 蒋实, 赵宏刚, 李亚伟, 田霄. 三维地质建模在高放废物地质处置预选地段筛选中的应用——以新疆预选区天湖预选地段为例[J]. 物探与化探, 2021, 45(6): 1488-1496.
[5] 孙乃泉, 李良, 蒲仁海, 彭胜琴. 鄂尔多斯盆地北部杭锦旗地区中元古界断陷—坳陷层地层特征[J]. 物探与化探, 2020, 44(5): 1144-1152.
[6] 罗辉, 王驹, 蒋实, 赵宏刚, 金远新. 高放废物地质处置新场岩体三维地质模型构建与应用[J]. 物探与化探, 2019, 43(3): 568-575.
[7] 何育枫, 李晓娟, 佘继红, 陈晔, 徐礼鹏. 基于T-C-V架构的三维城市地质信息共享平台建设[J]. 物探与化探, 2018, 42(4): 804-810.
[8] 林玉祥, 马小伟, 朱传真, 宋喜林, 米晓利, 张岗. 地表化探异常立体解释模型的建立及其意义——以库车坳陷米斯布拉克地区为例[J]. 物探与化探, 2016, 40(4): 705-712.
[9] 何京国, 张志林, 潘家智, 宁鹏鹏, 荣毅. 巨厚黄土塬区地震采集技术[J]. 物探与化探, 2013, 37(5): 866-871.
[10] 何新贞, 尚新民, 王常波, 石林光, 马利斌. 复杂地表及地下地质条件下地震资料处理中的若干重要环节[J]. 物探与化探, 2004, 28(5): 453-456.
[11] 钱绍瑚, 刘江平, 黄嘉正. 浅层地震勘探在某工业区工程地质勘察中的应用[J]. 物探与化探, 1994, 18(3): 161-165.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com