Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (1): 162-170    DOI: 10.11720/wtyht.2023.2356
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
一种重力异常向上延拓高度最优化确定方法
孙争(), 王俊(), 丁鹏, 谭鑫
中国地质大学(北京) 地球物理与信息技术学院,北京 100083
Amethod for determining the optimal height for upward continuation of gravity anomalies
SUN Zheng(), WANG Jun(), DING Peng, TAN Xin
School of Geophysics and Information Technology, China University of Geosciences (Beijing), Beijing 100083, China
全文: PDF(5587 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

向上延拓方法是重力异常分离中的重要方法之一,但在应用时如何定量地选取合适的延拓高度是一直以来存在的问题。本文针对该问题展开研究,提出一种基于二乘误差的曲率分析方法来定量地给出相对合理的延拓高度。该方法对观测数据进行相邻不同高度的向上延拓,并用二乘法估算相邻高度延拓值的二乘误差,在各相邻高度延拓值二乘曲线中存在一个曲率最大值,在这个点最大程度地使局部异常衰减并尽可能地保留区域异常,可近似视为最佳延拓高度。利用理论模型数据对所提出的方法进行了测试,表明该方法能够定性给出较合适的延拓高度,从而为实际应用中延拓高度的选取提供参考。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙争
王俊
丁鹏
谭鑫
关键词 重力异常解析延拓向上延拓高度    
Abstract

Upward continuation is one of the important methods used to separate gravity anomalies. However, how to quantitatively select an appropriate upward-continuation height has always been a problem in the application of this method. Given this, this paper proposes a curvature analysis method based on the least square method to quantitatively determine a reasonable upward-continuation height. The steps of this method are as follows. Perform upward continuation to different adjacent heights for observation data, and then use the least square method to estimate the least square error of the upward continued value of adjacent heights.There is a maximum curvature in the least square curve of upward-continued values of all adjacent heights.At the point of the maximum curvature, the local anomalies are attenuated to the greatest extent, while the regional anomalies are preserved as far as possible. Therefore, this point can be approximately regarded as the optimal upward-continuation height. As indicated by tests using the data of a theoretical model, the method proposed in this paper can be used to qualitatively determine a suitable upward-continuation height, thus providing an important reference for the selection of upward-continuation height in practical applications.

Key wordsgravity anomaly    analytic continuation    upward-continuation height
收稿日期: 2021-06-24      修回日期: 2021-09-04      出版日期: 2023-02-20
ZTFLH:  P631  
基金资助:中国地质大学(北京)大学生创新创业训练计划项目(202011415297)
通讯作者: 王俊(1989-),男,副教授,主要从事位场方法技术与应用研究工作。Email: wangj@cugb.edu.cn
作者简介: 孙争(1999-),男,在读本科生,研究方向为重磁数据处理。Email:1010181224@cugb.edu.cn
引用本文:   
孙争, 王俊, 丁鹏, 谭鑫. 一种重力异常向上延拓高度最优化确定方法[J]. 物探与化探, 2023, 47(1): 162-170.
SUN Zheng, WANG Jun, DING Peng, TAN Xin. Amethod for determining the optimal height for upward continuation of gravity anomalies. Geophysical and Geochemical Exploration, 2023, 47(1): 162-170.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.2356      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I1/162
球体 中心坐标 埋藏深度/m 球体半径/m 剩余密度/(g·cm-3)
A (101,101) 57 8 0.5
B (31,171) 9 2.5 0.25
Table 1  球形重力异常体的几何和物性参数
Fig.1  理论重力异常
a—总场;b—区域场;c—局部场;d—异常体空间位置
Fig.2  理论最佳延拓高度分析曲线
a—由相关系数法确定的理论最佳延拓高度;b—由二乘法确定的理论最佳延拓高度
Fig.3  理论最佳延拓高度的延拓场
a—5 m的向上延拓场;b—8 m的向上延拓场;c—5 m的向上延拓剩余场;d—8 m的向上延拓剩余场
Fig.4  相邻高度延拓分析
a—相邻高度延拓值的二乘分析;b—二乘误差离散曲率分析;c—相邻高度延拓值的相关系数分析;d—相关系数离散曲率分析
Fig.5  最佳选取高度的延拓场(a)与剩余场(b)
Fig.6  吉林省某矿区布格重力异常
Fig.7  延拓高度分析曲线
Fig.8  h为延拓高度的延拓场
Fig.9  最佳选取高度得到的延拓场(a)和剩余场(b)
[1] 曾华霖. 重力场与重力勘探[M]. 北京: 地质出版社, 2005.
[1] Zeng H L. Gravity field and gravity exploration[M]. Beijing: Geological Publishing House, 2005.
[2] 曾华霖. 重力梯度测量的现状及复兴[J]. 物探与化探, 1999, 23(1):1-6.
[2] Zeng H L. Present state and revival of gravity gradiometry[J]. Geophysical and Geochemical Exploration, 1999, 23(1):1-6.
[3] 徐连喜. 三维重磁场积分延拓计算方法[J]. 物探与化探, 1988, 12(2):91-98.
[3] Xu L X. Integral continuation method forthree-dimensional cravity and magnetic field[J]. Geophysical and Geochemical Exploration, 1988, 12(2):91-98.
[4] 王明, 王林飞, 何辉. 匹配滤波技术分离重力场源[J]. 物探与化探, 2015, 39(S1):126-132.
[4] Wang M, Wang L F, He H. The application of the matched filtering technology to the separation of gravity field sources[J]. Geophysical and Geochemical Exploration, 2015, 39(S1):126-132.
[5] 黎海龙, 朱国器. 桂西地区重力场小波多重分解及地质意义[J]. 物探与化探, 2007, 31(5):465-468.
[5] Li H L, Zhu G Q. The wavelet multiple decomposition of the gravity field in Guixi(Western Guangxi) area and its geological significance[J]. Geophysical and Geochemical Exploration, 2007, 31(5):465-468.
[6] 郭良辉, 孟小红, 石磊, 等. 重力异常分离的相关法[J]. 地球物理学进展, 2008, 23(5):1425-1430.
[6] Guo L H, Meng X H, Shi L, et al. The correlation method for gravity anomaly separation[J]. Progress in Geophysics, 2008, 23(5):1425-1430.
[7] Gupta V K, Ramani N. Some aspects of regional-residual separation of gravity anomalies in a Precambrian terrain[J]. Geophysics, 1980, 45(9):1412-1426.
doi: 10.1190/1.1441130
[8] 陈玉. 解析法与随机法联合定量反演位场[J]. 物探与化探, 2002, 26(6):470-474.
[8] Cen Y. The combination of analytical method and stochastic method for quantitative inversion of potential field[J]. Geophysical and Geochemical Exploration, 2002, 26(6):470-474.
[9] 汪炳柱, 王硕儒. 二维位场向上延拓与向下延拓的样条函数法[J]. 物探化探计算技术, 1998, 20(2):125-129.
[9] Wang B Z, Wang S R. Spline function methods for upward continuation and downward continuation of 2D potential field[J]. Computing Techniques for Geophysical and Geochemical Exploration, 1998, 20(2):125-129.
[10] Kebede H, Alemu A, Fisseha S. Upward continuation and polynomial trend analysis as a gravity data decomposition,case study at Ziway-Shala basin,central Main Ethiopian rift[J]. Heliyon, 2020, 6(1):e03292.
doi: 10.1016/j.heliyon.2020.e03292
[11] Christopher J, Jong K L, Jay H K. Modeling errors in upward continuation for INS gravity compensation[J]. Journal of Geodesy, 2007, 81(5) :297-309.
doi: 10.1007/s00190-006-0108-y
[12] Heikki V, Olaf A, Ari V. One-dimensional upward continuation of the ground magnetic field disturbance using spherical elementary current systems[J]. Earth,Planets and Space, 2003, 55(10):613-625.
doi: 10.1186/BF03352468
[13] 熊光楚. 矿产预测中重磁异常变换的若干问题二—向上延拓的作用及问题[J]. 物探与化探, 1992, 16(5):358-364.
[13] Xiong G C. Some problems concerning the transformation of gravity and magnetic anomalies in prognosis of ore resources Ⅱ-The effect and problems of upward continuation[J]. Geophysical and Geochemical Exploration, 1992, 16(5):358-364.
[14] Tariq A. Full-model wavenumber inversion:An emphasis on the appropriate wavenumber continuation[J]. Geophysics, 2016, 81(3) :R89-R98.
[15] 熊光楚. 矿产预测中重磁异常变换的若干问题三—向上延拓高度与研究深度的关系[J]. 物探与化探, 1992, 16(6):452-455.
[15] Xiong G C. Some problems concerning the transformation of gravity and magnetic anomalies in prognosis of ore resources Ⅲ-The relationship between the height of upward continuation and the depth of investigation[J]. Geophysical and Geochemical Exploration, 1992, 16(6):452-455.
[16] 尹伟言, 陈真, 蒋涛, 等. 地面重力数据向上延拓方法比较[J]. 地理空间信息, 2018, 16(7):75-77.
[16] Yin W Y, Chen Z, Jiang T, et al. Comparison of upward continuation methods for ground gravity data[J]. Geospatial Information, 2018, 16(7):75-77.
[17] Pawlowski R S. Preferential continuation for potential-field anomaly enhancement[J]. Geophysics, 1995, 60(2):390-398.
doi: 10.1190/1.1443775
[18] Jacobsen B H. A case for upward continuation as a standard separation filter for potential-field maps[J]. Geophysics, 1987, 52(8):1138-1148.
doi: 10.1190/1.1442378
[19] 曾华霖, 许德树. 最佳向上延拓高度估计[J]. 地学前缘, 2002, 9(2):499-504.
[19] Zeng H L, Xu D S. Estimation of optimum upward continuation height[J]. Geoscience Frontiers, 2002, 9(2):499-504.
[20] Farhadinia B. A modified class of correlation coefficients of hesitant fuzzy information[J]. Soft Computing, 2021, 25(10):7009-7028.
doi: 10.1007/s00500-021-05629-0
[21] Zhang P J. The frequency drift and fine structures of Solar S-bursts in the high frequency band of LOFAR[J]. The Astrophysical Journal, 2002, 891(1):89.
doi: 10.3847/1538-4357/ab7005
[22] 孙海龙, 吕伟星, 陈鑫, 等. 解析延拓法在山阳磁法数据解释中的应用[J]. 中国煤炭地质, 2017, 29(2):76-82.
[22] Sun H L, Lyu W X, Chen X, et al. Application of analytical continuation method on magnetometric data interpretation in shanyang area[J]. Coal Geology of China, 2017, 29(2):76-82.
[1] 杨荣祥, 王万银, 蔡梦轲, 王丁丁, 罗新刚. 基于卫星重力异常的渤海盆地秦南凹陷及邻区构造格局研究[J]. 物探与化探, 2023, 47(3): 584-596.
[2] 王润生, 武斌, 张海瑞, 于嘉宾, 董彦龙, 郭国强, 康一鸣. 山东省临沂凸起东北缘重力场特征及大地构造单元边界讨论[J]. 物探与化探, 2023, 47(2): 279-289.
[3] 石泽玉, 张志厚, 刘鹏飞, 范祥泰. 重力及其梯度异常正演的Moving-footprint大尺度模型分解方法[J]. 物探与化探, 2022, 46(3): 576-584.
[4] 王蓉, 熊杰, 刘倩, 薛瑞洁. 基于深度神经网络的重力异常反演[J]. 物探与化探, 2022, 46(2): 451-458.
[5] 杨婧, 郭良辉. 重力异常曲化平的改进插值—迭代法[J]. 物探与化探, 2022, 46(1): 123-129.
[6] 冯旭亮, 魏泽坤. 基于界面反演增强的位场边缘识别方法[J]. 物探与化探, 2022, 46(1): 130-140.
[7] 高维强, 史朝洋, 张利明, 冯旭亮. 山区地形改正密度逐次回归选取方法[J]. 物探与化探, 2021, 45(6): 1530-1538.
[8] 王正科, 卢琳, 刘花婷. 一种实测重力异常区域场的消除方法[J]. 物探与化探, 2021, 45(6): 1569-1577.
[9] 陈青, 孙帅, 丁成艺, 黄小宇, 陈浩, 申鹏, 罗港, 魏耀聪. iTilt-Euler法在重力数据处理及断裂解释中的应用[J]. 物探与化探, 2021, 45(6): 1578-1587.
[10] 邢锦程, 袁炳强, 张春灌, 冯旭亮, 段瑞锋, 薛健, 贾洪杨, 李想. 特立尼达盆地重力场特征及油气远景[J]. 物探与化探, 2021, 45(6): 1606-1616.
[11] 王冠鑫, 罗锋, 周锡华, 闫方. 航空重力弱信号提取的卡尔曼滤波方法研究[J]. 物探与化探, 2021, 45(1): 76-83.
[12] 王学发, 王万银, 马杰, 杨敏, 梁建设, 邱春光, 王丁丁, 纪晓琳, 刘金兰. 基于重力资料的马达加斯加岛及邻区盆地构造单元分布特征[J]. 物探与化探, 2020, 44(4): 928-937.
[13] 许文强, 袁炳强, 刘必良, 姚长利. 多种重磁位场边缘识别方法及在南黄海北部断裂构造识别中的应用研究[J]. 物探与化探, 2020, 44(4): 962-974.
[14] 陈挺, 严迪, 杨剑, 廖国忠, 武斌, 冉中禹. 基于重力值标准差研究长宁6.0级地震活动性[J]. 物探与化探, 2020, 44(3): 480-488.
[15] 邱峰, 杜劲松, 陈超. 重力异常及其梯度张量DEXP定量解释方法的影响因素分析[J]. 物探与化探, 2020, 44(3): 540-549.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com