Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (1): 156-161    DOI: 10.11720/wtyht.2023.2553
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
一种低温超导航磁梯度张量数据补偿模型
侯瑞东1,2,3(), 郭子祺2,3(), 乔彦超2,3, 刘建英2,3
1.中国科学院大学 资源与环境学院,北京 100049
2.中国科学院 空天信息创新研究院,北京 100094
3.遥感科学国家重点实验室,北京 100101
A compensation model of aeromagnetic gradient tensor data based on low-temperature superconducting
HOU Rui-Dong1,2,3(), GUO Zi-Qi2,3(), QIAO Yan-Chao2,3, LIU Jian-Ying2,3
1. College of Resources and Environment University of Chinese Academy of Sciences, Beijing 100049, China
2. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
3. State Key Laboratory of Remote Sensing Science, Beijing 100101, China
全文: PDF(2504 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

超导航磁梯度张量数据补偿时,补偿模型的仿真结果与实际测量数据补偿结果往往存在一定差异。本文从实测数据出发,以建立对实测数据有效的模型为目标,分析了误差的来源,结合磁干扰、安装误差、不平衡度等提出了综合补偿模型,给出了模型求解方法。同时,采用综合补偿模型对实测数据进行补偿处理并验证。实验结果表明,本文所建立的综合补偿模型适用于实测数据的补偿,能够有效降低外界干扰的影响,提高航磁梯度张量数据的质量,且补偿效果明显。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
侯瑞东
郭子祺
乔彦超
刘建英
关键词 超导量子干涉仪航磁梯度张量测量磁补偿补偿模型    
Abstract

In the compensation of the aeromagnetic gradient tensor data based on superconducting, the simulation results of the compensation model often differ from the compensation results of the survey data. To establish a model that is valid for measured data, this study analyzed the sources of errors, proposed a comprehensive compensation model by combining magnetic interference, installation errors, and the degree of unbalance, and determined the method to solve the model. Moreover, this study compensated the measured data using the comprehensive compensation model proposed and verified the compensation effects. The experimental results show that the comprehensive compensation model is applicable to the compensation of measured data since it can not only effectively reduce the influence of external interference but also can improve the quality of magnetic gradient tensor data and achieve significant compensation effects.

Key wordssuperconducting quantum interference device    aeromagnetic gradient    tensor survey    magnetic compensation    compensation model
收稿日期: 2021-10-14      修回日期: 2022-04-25      出版日期: 2023-02-20
ZTFLH:  P631  
基金资助:国家重点研发计划研究项目“低温超导航空磁矢量梯度观测技术”(2021YFB3900201)
通讯作者: 郭子祺(1963-),男,研究员,主要从事地球物理勘探设备研究工作。Email:guozq@radi.ac.cn
作者简介: 侯瑞东(1997-),男,在读硕士,研究方向为张量磁补偿技术。Email:houruidong19@mails.ucas.ac.cn
引用本文:   
侯瑞东, 郭子祺, 乔彦超, 刘建英. 一种低温超导航磁梯度张量数据补偿模型[J]. 物探与化探, 2023, 47(1): 156-161.
HOU Rui-Dong, GUO Zi-Qi, QIAO Yan-Chao, LIU Jian-Ying. A compensation model of aeromagnetic gradient tensor data based on low-temperature superconducting. Geophysical and Geochemical Exploration, 2023, 47(1): 156-161.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.2553      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I1/156
Fig.1  六棱台安装结构(a)及坐标系(b)(截面垂直于y轴)
Fig.2  闭合框有效部分
Fig.3  闭合框测线补偿结果对比
G1 G2 G3 G4 G5 G6 mean
补偿前σ Line1 0.5761 0.8201 1.1711 0.7814 0.9162 0.7253 0.8317
Line2 0.7229 0.4262 0.6916 0.8545 0.6699 0.8314 0.6994
Line3 0.7033 0.5446 0.6784 0.7712 1.3354 0.7168 0.7916
Line4 0.4413 0.7411 0.8144 0.7838 0.6123 0.7393 0.6887
补偿后σ Line1 0.0031 0.0029 0.005 0.0034 0.0115 0.0043 0.0050
Line2 0.0013 0.0005 0.0015 0.002 0.0022 0.002 0.0016
Line3 0.0014 0.0015 0.0021 0.002 0.0026 0.0026 0.0020
Line4 0.0014 0.001 0.0015 0.0026 0.0036 0.0023 0.0021
改善比IR Line1 185.84 282.79 234.22 229.82 79.67 168.67 373.0675
Line2 556.08 852.40 461.07 427.25 304.50 415.70
Line3 502.36 363.07 323.05 385.60 513.62 275.69
Line4 315.21 741.10 542.93 301.46 170.08 321.43
  2 000 m高度磁梯度数据统计
[1] Schmidt P W, Clark D A. The magnetic gradient tensor:Its properties and uses in source characterization[J]. The Leading Edge, 2006, 25(1):75-78.
doi: 10.1190/1.2164759
[2] Chwala A, Stolz R, Zakosarenko V, et al. Full tensor SQUID gradiometer for airborne exploration[J]. ASEG Extended Abstracts, 2012, 2012(1):1-4.
[3] Argast D, FitzGerald D, Holstein H, et al. Compensation of the full magnetic tensor gradient signal[J]. ASEG Extended Abstracts, 2010, 2010(1):1-4.
[4] Leliak P. Identification and evaluation of magnetic-field sources of magnetic airborne detector equipped aircraft[J]. IRE Transactions on Aerospace and Navigational Electronics, 1961(3):95-105.
[5] Bickel S H. Small signal compensation of magnetic fields resulting from aircraft maneuvers[J]. IEEE Transactions on aerospace and electronic systems, 1979 (4):518-525.
[6] Bickel S H. Error analysis of an algorithm for magnetic compensation of aircraft[J]. IEEE Transactions on Aerospace and Electronic Systems, 1979(5):620-626.
[7] Groom R W, Jia R, Lo B. Magnetic compensation of magnetic noises related to aircraft’s maneuvers in airborne survey[C]// 17th EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems.European Association of Geoscientists & Engineers, 2004.
[8] 刘首善, 唐林牧, 许庆丰, 等. 航磁补偿技术及补偿质量的评价方法[J]. 海军航空工程学院学报, 2016, 31(6):641-647.
[8] Liu S S, Tang L M, Xu Q F, et al. Investigation of aeromagnetic compensation technology and performance assessment method[J]. Journal of Naval Aeronautical and Astronautical University, 2016, 31(6):641-647.
[9] DZ/T 0142-2010,航空磁测技术规范[S].
[9] DZ/T 0142-2010,Criterion of aeromagnetic survey[S].
[10] 吴文福, 袁皓. 氦光泵磁力仪的应用与发展研究综述[J]. 声学与电子工程, 2016(4):1-5,9.
[10] Wu W F, Yuan H. A review of the application and development of Helium Optically Pumped magnetometer[J]. Acoustics and Electronics Engineering, 2016(4):1-5,9.
[11] 裴易峰, 荣亮亮, 张懿, 等. 低温SQUID瞬变电磁法中去除地磁场影响的方法研究[J]. 地球物理学进展, 2019, 34(2):622-627.
[11] Pei Y F, Rong L L, Zhang Y, et al. Removal of geomagnetic field in low-temperature SQUID TEM[J]. Progress in Geophysics, 2019, 34(2):622-627.
[12] Stolz R, Zakosarenko V, Schulz M, et al. Magnetic full-tensor SQUID gradiometer system for geophysical applications[J]. The Leading Edge, 2006, 25(2):178-180.
doi: 10.1190/1.2172308
[13] Schmidt P W, Clark D A. The magnetic gradient tensor:Its properties and uses in source characterization[J]. The Leading Edge, 2006, 25(1):75-78.
doi: 10.1190/1.2164759
[14] Schmidt P W, Clark D A. The magnetic gradient tensor:Its properties and uses in source characterization[J]. The Leading Edge, 2006, 25(1):75-78.
doi: 10.1190/1.2164759
[15] Groom R W, Jia R, Lo B. Magnetic compensation of magnetic noises related to aircraft's maneuvers in airborne survey[C]// Symposium on the Application of Geophysics to Engineering and Environmental Problems 2004,Society of Exploration Geophysicists, 2004.
[16] 刘洋, 荣亮亮, 蒋坤, 等. 超导磁力仪射频屏蔽仿真与实验研究[J]. 低温物理学报, 2014, 36(2):136-139.
[16] Liu Y, Rong L L, Jiang K, et al. Simulation and experimental on shielding effect of radio friquency for superconducting megnetometer[J]. Chinese Journal of Low Temperature Physics, 2014, 36(2):136-139.
[17] 常凯, 伍俊, 蒋坤, 等. 无人机平台航空超导磁测系统与室内测试[J]. 低温物理学报, 2015, 37(4):267-270.
[17] Chang K, Wu J, Jiang K, et al. Airborne geophysics squid magnetic probing magnetic probing system and indoor test[J]. Chinese Journal of Low Temperature Physics, 2015, 37(4):267-270.
[18] 荣亮亮, 包苏新, 董丙元, 等. 基于低温SQUID瞬变电磁系统的涡流补偿方法[J]. 传感技术学报, 2019, 32(10):1483-1486.
[18] Rong L L, Bao S X, Dong B Y, et al. The method of eliminating eddy current from low-temperature SQUID based TEM system[J]. Journal of Transduction Technology, 2019, 32(10):1483-1486.
[19] 周建军, 林春生, 谢静. 一种分离铁磁体感应磁矩与剩余磁矩的测量方法[J]. 武汉理工大学学报:交通科学与工程版, 2014, 38(3):580-584.
[19] Zhou J J, Lin C S, Xie J. A method for separate inductive magnetic moment and residual magnetic moment of ferromagnet[J]. Journal of Wuhan University of Technology:Transportation Science & Engineering, 2014, 38(3):580-584.
[20] 周建军, 林春生, 杨振宇. 变化磁场作用下椭球体涡流磁矩的计算[J]. 大学物理, 2012, 31(11):43-46.
[20] Zhou J J, Lin C S, Yang Z Y. Calculation of ellipsoid eddy-current moment under varying magnetic field[J]. College Physics, 2012, 31(11):43-46.
[21] 苗红松. 航空磁通门全张量仪校正及磁补偿方法研究[D]. 长春: 吉林大学, 2017.
[21] Miao H S. Research on calibration and compensation method of airborne fluxgate magnetic tensor gradiometer[D]. Changchun: Jilin University, 2017.
[1] 西永在, 路宁, 张兰, 李军峰, 张富明, 吴珊, 廖桂香, 贲放, 黄威. 基于无人直升机平台的航磁系统集成与应用[J]. 物探与化探, 2019, 43(1): 125-131.
[2] 梁建, 庄道泽, 郭玉峰, 杨望. 利用航磁重复线测量内符合精度消除航磁梯度测量中的转向差[J]. 物探与化探, 2018, 42(3): 576-582.
[3] 周德文, 孟庆奎, 杨怡, 蒋久明, 高维, 王晨阳. 航磁全轴梯度异常特征研究[J]. 物探与化探, 2018, 42(3): 583-588.
[4] 孟庆奎, 周德文, 高维, 杨怡, 陈浩, 王晨阳, 李健, 朱彦珍. 国内外航磁补偿技术历史与展望[J]. 物探与化探, 2017, 41(4): 694-699.
[5] 孙海仁. 飞机磁补偿质量评价及补后检查验证方法[J]. 物探与化探, 2016, 40(5): 1040-1045.
[6] 黄高元, 张国鸿. CSAMT法张量与标量测量在已知铁矿区上的对比试验[J]. 物探与化探, 2014, 38(6): 1207-1211.
[7] 骆遥, 段树岭, 王金龙, 刘志强, 梁韧, 程怀德. AGS-863航磁全轴梯度勘查系统关键性指标测试[J]. 物探与化探, 2011, 35(5): 620-625.
[8] 李晓昌. 连续电磁剖面法在青藏高原北羌塘盆地龙尾湖区块构造详查中的应用[J]. 物探与化探, 2010, 34(3): 303-307.
[9] 李军峰, 刘凯飞, 刘莹莹, 吴珊. 频率域航空电磁系统一次磁场自动补偿技术[J]. 物探与化探, 2009, 33(5): 536-540.
[10] 戴琛. 直流输电线路对磁测的影响[J]. 物探与化探, 2008, 32(4): 408-411,416.
[11] 李晓禄, 蔡文良. 运五飞机上航磁梯度测量系统的安装与补偿[J]. 物探与化探, 2006, 30(3): 224-228,232.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com