Please wait a minute...
E-mail Alert Rss
 
物探与化探  2020, Vol. 44 Issue (3): 540-549    DOI: 10.11720/wtyht.2020.1360
     方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
重力异常及其梯度张量DEXP定量解释方法的影响因素分析
邱峰1,2, 杜劲松1,2,3(), 陈超1,2
1. 中国地质大学(武汉) 地球物理与空间信息学院,湖北 武汉 430074
2. 中国地质大学(武汉) 地球内部多尺度成像湖北省重点实验室,湖北 武汉 430074
3. 中国地质大学(武汉) 地质过程与矿产资源国家重点实验室,湖北 武汉 430074
Influence factor analysis of quantitative interpretation for gravity anomaly and its gradient tensor by DEXP
Feng QIU1,2, Jin-Song DU1,2,3(), Chao CHEN1,2
1. Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, China
2. Hubei Subsurface Multi-scale Imaging Key Laboratory, China University of Geosciences, Wuhan 430074, China
3. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China
全文: PDF(6707 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

快速成像反演方法是近几年重磁勘探定量解释的一个发展热点,由于其在计算过程中不需要加入先验信息,故而可以较为快速地估算场源的深度与密度等相关参量。DEXP(depth from extreme point)成像法由于在深度加权函数中考虑了构造指数,使得成像结果更为准确。笔者基于DEXP快速成像法的基本理论,首先,推导了重力异常及重力梯度张量的DEXP变换形式,并将其应用到场源解释之中;然后,采用理论模型试验,分别分析了数据的点距、误差、计算范围以及背景场对成像结果的影响;最后,将该成像方法应用于实测的全张量重力梯度数据,并与前人研究结果进行了对比与分析。理论模型试验与实际应用均表明:DEXP成像法能够有效压制数据噪声的影响,具有计算稳定性和准确性特点;数据的点距、计算范围和背景场均对DEXP成像结果具有一定的影响,因此在实际数据处理时,应该综合考虑它们对成像结果的影响,并且需要进行相关数据预处理以提高定量解释的精度。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邱峰
杜劲松
陈超
关键词 DEXP重力异常重力梯度张量定量解释影响因素分析    
Abstract

Fast imaging inversion method has been a hotspot in quantitative interpretation of gravity and magnetic exploration in recent years. Because it does not need to add prior information in the calculation, it can quickly estimate the source depth, density and other related parameters. DEXP (Depth from Extreme point) imaging method adds the corresponding structural index to the depth scaling function in the calculation, making the imaging results more accurate. Based on the basic theory of the DEXP rapid imaging method, firstly, transformation formulas for gravity field and gravity gradient tensor regarding depth from the extreme point method were calculated and applied to the causative source interpretation in this paper. Then, through different synthetic models tests, the effects of sampling interval, data error, computing range and background field on the imaging results were analyzed, respectively. Finally, the imaging method was applied to the full gravity tensor gradient field data, and the results were compared with those provided by previous researchers in the literature. Both the synthetic tests and the field example show that the DEXP imaging method not only has good suppression on the noise in the observation data but also shows the characteristics of computing stability and accuracy. In addition, the data sampling interval, calculation range and background field all have certain influences on DEXP imaging results. Therefore, when actual field data are interpreted, it is necessary to comprehensively consider their influences on the imaging results and perform the corresponding pre-processing to improve the accuracy of the quantitative interpretation.

Key wordsDEXP    gravity anomaly    gravity gradient tensor    quantitative interpretation    influence factor analysis
收稿日期: 2019-07-15      出版日期: 2020-06-24
:  P631  
基金资助:中国地质调查局项目“东天山卡拉塔格—雅满苏一带戈壁荒漠浅覆盖区地质填图”(DD20179607);国家自然科学基金项目(41604060);国家重点研发计划“深海关键技术与装备”重点专项(2016YFC0303001-2);地质过程与矿产资源国家重点实验室自主研究课题(MSFGPMR01-4)
通讯作者: 杜劲松
作者简介: 邱峰(1992-),男,在读硕士研究生,主要从事重磁勘探方面的学习与研究工作。Email: fengqiu@cug.edu.cn
引用本文:   
邱峰, 杜劲松, 陈超. 重力异常及其梯度张量DEXP定量解释方法的影响因素分析[J]. 物探与化探, 2020, 44(3): 540-549.
Feng QIU, Jin-Song DU, Chao CHEN. Influence factor analysis of quantitative interpretation for gravity anomaly and its gradient tensor by DEXP. Geophysical and Geochemical Exploration, 2020, 44(3): 540-549.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2020.1360      或      https://www.wutanyuhuatan.com/CN/Y2020/V44/I3/540
Fig.1  直立棱柱体模型的重力异常(a)及其DEXP变换结果(b)
Fig.2  直立棱柱体模型的重力梯度张量异常(a)及其DEXP变换结果(b)
Fig.3  加入不同高斯噪声的Tzz分量异常
Fig.4  图3对应的Tzz分量DEXP变换结果
Fig.5  数据点距为1 m(a)、2 m(b)和5 m(c)情况下的Tzz分量DEXP变换成像结果
Fig.6  计算范围为-50~50 m(a)、-60~60 m(b)、-70~70 m(c)、-80~80 m(d)、-100~100 m(e)时Tzz分量DEXP变换结果
Fig.7  加入-1E(a)、-0.5E(b)、-0.2E(c)、0E(d)、0.2E(e)和0.5E(f)的背景场之后的Tzz分量DEXP变换结果
Fig.8  Vinton盐丘地区重力异常(a)及其DEXP变换结果(b)
Fig.9  Vinton盐丘地区的全张量重力梯度异常数据
Fig.10  Vinton盐丘地区全张量重力梯度数据的DEXP变换结果
Fig.11  Vinton盐丘地区ΔTxx、ΔTyy和ΔTzz分量分场之后的局部场
Fig.12  Vinton盐丘地区ΔTxx、ΔTyy和ΔTzz分量的局部场DEXP变换成像结果
Fig.13  构造指数Np估计结果
[1] Li Y, Oldenburg D W. 3-D inversion of gravity data[J]. Geophysics, 1998,63(1):109-119.
doi: 10.1190/1.1444302
[2] Fedi M, Rapolla A. 3-D inversion of gravity and magnetic data with depth resolution[J]. Geophysics, 1999,64(2):452-460.
doi: 10.1190/1.1444550
[3] Zhdanov M S, Ellis R, Mukherjee S. Three-dimensional regularized focusing inversion of gravity gradient tensor component data[J]. Geophysics, 2004,69(4):925-937.
doi: 10.1190/1.1778236
[4] Fedi M, Pilkington M. Understanding imaging methods for potential field data[J]. Geophysics, 2012,77(1):G13-G24.
doi: 10.1190/GEO2011-0078.1
[5] Cribb J. Application of the generalized linear inverse to the inversion of static potential data[J]. Geophysics, 1976,41(6):1365-1369.
doi: 10.1190/1.1440686
[6] Moreau F, Gibert D, Holschneider M, et al. Identification of sources of potential fields with the continuous wavelet transform: basic theory[J]. Journal of Geophysical Research: Solid Earth, 1999,104(B3):5003-5013.
[7] Mauriello P, Patella D. Localization of maximum-depth gravity anomaly sources by a distribution of equivalent point masses[J]. Geophysics, 2001,66(5):1431-1437.
doi: 10.1190/1.1487088
[8] Zhdanov M S, Liu X, Wilson G A, et al. Potential field migration for rapid imaging of gravity gradiometry data[J]. Geophysical Prospecting, 2011,59(6):1052-1071.
doi: 10.1111/j.1365-2478.2011.01005.x
[9] Fedi M. DEXP: a fast method to determine the depth and the structural index of potential fields sources[J]. Geophysics, 2007,72(1):I1-I11.
doi: 10.1190/1.2399452
[10] Guo L H, Meng X H, Shi L, et al. 3-D correlation imaging for gravity and gravity gradiometry data[J]. Chinese Journal of Geophysics, 2009,52(2):1098-1106.
[11] Zhdanov M S, Liu X, Wilson G A, et al. 3D migration for rapid imaging of total-magnetic-intensity data[J]. Geophysics, 2012,77(2):J1-J5.
doi: 10.1190/GEO2011-0425.1
[12] Zhou W, Liu C. Depth from extreme points method for gravity gradient tensor data[J]. Geophysical Prospecting, 2018,66(2):432-443.
[13] Fedi M, Abbas M A. A fast interpretation of self-potential data using the depth from extreme points method[J]. Geophysics, 2013,78(2):E107-E16.
doi: 10.1190/GEO2012-0074.1
[14] Abbas M A, Fedi M, Florio G. Improving the local wavenumber method by automatic DEXP transformation[J]. Journal of Applied Geophysics, 2014,111:250-255.
doi: 10.1016/j.jappgeo.2014.10.004
[15] Fedi M, Florio G. Determination of the maximum-depth to potential field sources by a maximum structural index method[J]. Journal of Applied Geophysics, 2013,88:154-160.
doi: 10.1016/j.jappgeo.2012.10.009
[16] Thompson D T. EULDPH: A new technique for making computer assisted depth estimates from magnetic data[J]. Geophysics, 1982,47(1):31-37.
doi: 10.1190/1.1441278
[17] Geng M, Huang D, Yang Q, et al. 3D inversion of airborne gravity-gradiometry data using cokriging[J]. Geophysics, 2014,79(4):G37-G47.
doi: 10.1190/GEO2013-0393.1
[18] 袁园. 全张量重力梯度数据的综合分析与处理解释[D]. 长春: 吉林大学, 2015.
[18] Yuan Y. Comprehensive analysis, processing and interpretation of the full tensor gravity gradient data[D]. Changchun: Jilin University, 2015.
[19] 陈玲娜, 曾昭发, 袁园, 等. 利用比值DEXP进行重力梯度数据深度成像[J]. 世界地质, 2015,34(4):1113-1119.
[19] Chen L N, Zeng Z F, Yuan Y, et al. Using ratio DEXP for depth imaging of gravity gradient data[J]. Global Geology, 2015,34(4):1113-1119.
[20] Thompson S A, Eichelberger O H. Vinton salt dome, CalcasieuParish, Louisiana[J]. AAPG Bulletin, 1982,12(4):385-394.
[21] Salem A, Masterton S, Campbell S, et al. Interpretation of tensor gravity data using an adaptive tilt angle method[J]. Geophysical Prospecting, 2013,61(5):1065-1076.
doi: 10.1111/1365-2478.12039
[22] Oliveira Jr V C, Barbosa V C F. 3-D radial gravity gradient inversion[J]. Geophysical Journal International, 2013,195(2):883-902.
doi: 10.1093/gji/ggt307
[23] 周文月, 马国庆, 侯振隆, 等. 重力全张量数据联合欧拉反褶积法研究及应用[J]. 地球物理学报, 2017,60(12):4855-4865.
[23] Zhou W Y, Ma G Q, Hou Z L, et al. The study on the joint Euler deconvolution method of full tensor gravity data[J]. Chinese J. Geophysics, 2017,60(12):4855-4865.
[24] 马国庆, 黄大年, 李丽丽. Vinton dome地区全张量重力异常的解释[J]. 地球物理学进展, 2015,30(2):0510-0515.
[24] Ma G Q, Hung D N, Li L L. The interpretation of full tensor gravity gradient data in Vinton dome area[J]. Progress in Geophysics, 30(2):510-515.
[25] 王浩然, 陈超, 杜劲松. 重力梯度张量数据的三维反演方法与应用[J]. 石油地球物理勘探, 2013,48(3):474-481.
[25] Wang H R, Chen C, Du J S. 3-D inversion method and application of gravity gradient tensor data[J]. Oil Geophysical Prospecting, 2013,48(3):474-481.
[1] 杨婧, 郭良辉. 重力异常曲化平的改进插值—迭代法[J]. 物探与化探, 2022, 46(1): 123-129.
[2] 冯旭亮, 魏泽坤. 基于界面反演增强的位场边缘识别方法[J]. 物探与化探, 2022, 46(1): 130-140.
[3] 邢锦程, 袁炳强, 张春灌, 冯旭亮, 段瑞锋, 薛健, 贾洪杨, 李想. 特立尼达盆地重力场特征及油气远景[J]. 物探与化探, 2021, 45(6): 1606-1616.
[4] 高维强, 史朝洋, 张利明, 冯旭亮. 山区地形改正密度逐次回归选取方法[J]. 物探与化探, 2021, 45(6): 1530-1538.
[5] 王正科, 卢琳, 刘花婷. 一种实测重力异常区域场的消除方法[J]. 物探与化探, 2021, 45(6): 1569-1577.
[6] 陈青, 孙帅, 丁成艺, 黄小宇, 陈浩, 申鹏, 罗港, 魏耀聪. iTilt-Euler法在重力数据处理及断裂解释中的应用[J]. 物探与化探, 2021, 45(6): 1578-1587.
[7] 王冠鑫, 罗锋, 周锡华, 闫方. 航空重力弱信号提取的卡尔曼滤波方法研究[J]. 物探与化探, 2021, 45(1): 76-83.
[8] 王学发, 王万银, 马杰, 杨敏, 梁建设, 邱春光, 王丁丁, 纪晓琳, 刘金兰. 基于重力资料的马达加斯加岛及邻区盆地构造单元分布特征[J]. 物探与化探, 2020, 44(4): 928-937.
[9] 许文强, 袁炳强, 刘必良, 姚长利. 多种重磁位场边缘识别方法及在南黄海北部断裂构造识别中的应用研究[J]. 物探与化探, 2020, 44(4): 962-974.
[10] 陈挺, 严迪, 杨剑, 廖国忠, 武斌, 冉中禹. 基于重力值标准差研究长宁6.0级地震活动性[J]. 物探与化探, 2020, 44(3): 480-488.
[11] 朱晓刚, 袁炳强, 冯旭亮, 谷开拓, 张春灌, 李玉宏, 王亮, 王海萍, 郑鹏飞, 李祖鑫. 基于MT和重力资料的渭河盆地西部地区基底属性[J]. 物探与化探, 2020, 44(2): 254-261.
[12] 王逸宸, 柳林涛, 许厚泽. 基于卷积神经网络识别重力异常体[J]. 物探与化探, 2020, 44(2): 394-400.
[13] 黄天统, 彭新发, 朱自强. 基于非结构化网格的重力梯度张量反演[J]. 物探与化探, 2020, 44(1): 132-140.
[14] 王颖舜, 李军, 简兴祥. 基于Tanimoto相似的重力异常相关成像方法研究[J]. 物探与化探, 2019, 43(6): 1350-1357.
[15] 李望明, 吴述来, 易强. 利用管波信息进行定量解释的方法[J]. 物探与化探, 2017, 41(2): 311-315.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com