Please wait a minute...
E-mail Alert Rss
 
物探与化探  2021, Vol. 45 Issue (6): 1597-1605    DOI: 10.11720/wtyht.2021.0078
  《重、磁方法理论及应用研究》专栏 本期目录 | 过刊浏览 | 高级检索 |
三维Tesseroid网格模型重力异常正演方法及并行算法
王博1(), 郭良辉1,2(), 崔亚彤1, 王祥1
1.中国地质大学(北京) 地球物理与信息技术学院,北京 100083
2.地质过程与矿产资源国家重点实验室 中国地质大学(北京),北京 100083
The approach to gravity forward calculation of 3D Tesseroid mesh model and its parallel algorithm
WANG Bo1(), GUO Liang-Hui1,2(), CUI Ya-Tong1, Wang Xiang1
1. School of Geophysics and Information Technology, China University of Geosciences(Beijing),Beijing 100083,China
2. State Key Laboratory of Geological Processes and Mineral Resources, China Universityof Geosciences(Beijing),Beijing 100083,China
全文: PDF(3253 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

三维网格模型的正演计算是重力资料反演的基础。高精度、高效率的正演有利于提高反演解释质量。针对大尺度、地表观测面研究区的高精度、高效率重力正演问题,本文给出球坐标系三维Tesseroid网格模型重力异常正演方法及并行算法。其中,正演算法采用改进的高斯—勒让德积分法实现大尺度、地表观测面的重力异常高精度计算,并行算法采用基于OpenMP的MATLAB任务并行算法实现高效率计算。理论模型和华东岩石圈三维模型数据试验验证了本文方法的有效性。本文方法为高效的大尺度重力场模拟和三维反演提供技术支撑。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王博
郭良辉
崔亚彤
王祥
关键词 球坐标系Tesseroid重力正演并行计算地表观测面    
Abstract

The forward modeling of a 3D mesh model is the basis of gravity data inversion. High precision and high efficiency forward modeling is helpful to the improvement of the quality of inversion interpretation. In order to solve the problem of high precision and high efficiency gravity forward modeling based on a large-scale surface observation area, this paper presents the gravity anomaly forward modeling method and parallel algorithm of a 3D Tesseroid mesh model in the spherical coordinate system. The forward modeling uses the improved Gauss-Legendre Quadrature integration method to realize the high-precision gravity anomaly calculation based on a large-scale surface observation area, and also uses the MATLAB task parallel algorithm based on OpenMP to realize the high-efficiency forward modeling. The test on the 3D theoretical model and the Eastern China lithospheric model has verified the validity of the proposed method. This method can provide technical support for efficient large-scale gravity field simulation and 3D inversion.

Key wordsspherical coordinate    Tesseroid    gravity forward modeling    parallel computing    surface observation
收稿日期: 2021-02-09      出版日期: 2021-12-21
ZTFLH:  P631  
基金资助:国家自然科学基金面上项目(41774098);国家自然科学基金面上项目(41974101);中央高校基本科研业务费专项资金;地质过程与矿产资源国家重点实验室科技部专项经费
通讯作者: 郭良辉
作者简介: 王博(1998-),男,主要从事综合地球物理研究工作。Email: 2010200038@cugb.edu.cn
引用本文:   
王博, 郭良辉, 崔亚彤, 王祥. 三维Tesseroid网格模型重力异常正演方法及并行算法[J]. 物探与化探, 2021, 45(6): 1597-1605.
WANG Bo, GUO Liang-Hui, CUI Ya-Tong, Wang Xiang. The approach to gravity forward calculation of 3D Tesseroid mesh model and its parallel algorithm. Geophysical and Geochemical Exploration, 2021, 45(6): 1597-1605.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2021.0078      或      https://www.wutanyuhuatan.com/CN/Y2021/V45/I6/1597
Fig.1  Tesseroid单元体示意[8]
Fig.2  三维Tesseroid网格模型重力正演串行流程
Fig.3  三维Tesseroid网格模型
Fig.4  MATLAB parfor任务并行算法示意
Fig.5  俯冲带三维模型示意
Fig.6  GLQ2D串行和并行正演结果对比
注:白色虚线方框为俯冲带沿倾角方向投影到观测面上位置;黑色虚线为对比剖面位置
模型大小 核数 时间/s 加速比
101×101×40 串行 11432.970
2核 5871.609 1.947
4核 2882.673 3.966
6核 2033.522 5.622
8核 1704.662 6.707
10核 1441.482 7.931
12核 1193.787 9.577
Table 1  不同并行核数重力正演计算效率对比
数据量 并行时间/s 串行时间/s 加速比
51×51×20 86.243 529.506 6.159
51×51×40 147.773 1234.136 8.372
101×101×40 1193.787 11432.970 9.580
Table 2  不同数据量模型重力正演计算效率对比
Fig.7  华东岩石圈三维密度模型
Fig.8  华东岩石圈密度模型正演结果对比
注:黑色虚线为对比剖面位置
数据量 并行时间/s 串行时间/s 加速比
111×121×95 4841.807 54255.090 11.206
Table 3  重力正演计算效率对比
[1] Heck B, Seitz K. A comparison of the Tesseroid, prism and point-mass approaches for mass reductions in gravity field modelling[J]. J. Geodesy, 2007, 81(2):121-136.
doi: 10.1007/s00190-006-0094-0
[2] 杨学祥. 布格改正和地形改正的误差——关于区域重力测量中地形改正最大半径的讨论[J]. 地壳形变与地震, 1992(2):1-6.
[2] Yang X X. Errors in Bouguer and topographic correction—Discussion on the maximum radius of topographic correction in regional gravity measurement[J]. Crustal Deformation and Earthquake, 1992(2):1-6.
[3] 梁青. 月球重力异常特征与三维密度成像研究[D]. 武汉:中国地质大学(武汉), 2010.
[3] Liang Q. Gravity anomaly features and 3D density imaging of the moon[D]. Wuhan: China University of Geosciences (Wuhan), 2010.
[4] Grombein T, Seitz K, Heck B. Optimized formulas for the gravitational field of a Tesseroid[J]. J.Geodesy, 2013, 87(7):645-660.
[5] Uieda L, Barbosa V C FL. Fast nonlinear gravity inversion in spherical coordinates with application to the South American Moho[J]. Geophys. J. Int., 2017, 208(1):162-176.
doi: 10.1093/gji/ggw390
[6] Asgharzadeh M F Von Frese R R B Kim H R. Spherical prism magnetic effects by Gauss-Legendre quadrature integration[J]. Geophys. J. Int., 2008, 173(1):315-333.
doi: 10.1111/gji.2008.173.issue-1
[7] Zhang Y, Wu Y L, Yan J G, et al. 3D inversion of full gravity gradient tensor data in spherical coordinate system using local north oriented frame[J]. Earth, Planets and Space, 2018, 70(58):1-23.
doi: 10.1186/s40623-017-0766-4
[8] 王祥, 郭良辉. 球坐标系密度界面反演方法及在华南大陆的应用[J]. 物探与化探, 2020, 44(5):1161-1171.
[8] Wang X, Guo L H. Density interface inversion method in spherical coordinate and its application in South China mainland[J]. Geophysical and Geochemical Exploration, 2020, 44(5):1161-1171.
[9] Hao A W, Guo L H, Wang X. The apparent density mapping approach in spherical coordinates and the crustal density distribution of Chinese mainland[J]. IEEE Access, 2019, 7(1):160705-160717.
doi: 10.1109/Access.6287639
[10] Cui Y T, Guo L H. A wavenumber-domain iterative approach for 3D imaging of magnetic anomalies and gradients with depth constraints[J]. Journal of Geophysics and Engineering, 2019, 16(6):1032-1047.
doi: 10.1093/jge/gxz064
[11] Zhao G D, Chen B, Uieda L, et al. Efficient 3D large-scale forward-modeling and inversion of gravitational fields in spherical coordinates with application to lunar mascons[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(4):4157-4173.
doi: 10.1029/2019JB017691
[12] 陈召曦, 孟小红, 郭良辉, 等. 基于GPU 并行的重力、重力梯度三维正演快速计算及反演策略[J]. 地球物理学报, 2012, 55(12):4069-4077.
[12] Chen Z X, Meng X H, Guo L H, et al. Three-dimensional fast forward modeling and the inversion strategy for large scale gravity and gravimetry data based on GPU[J]. Chinese Journal of Geophysics, 2012, 55(12):4069-4077.
[13] Hou Z L, Wei X H, Huang D N, et al. Full tensor gravity gradiometry data inversion: performance analysis of parallel computing algorithms[J]. Applied Geophysics, 2015, 12(3):292-302.
doi: 10.1007/s11770-015-0495-z
[14] Hou Z L, Huang D N. Multi-GPU parallel algorithm design and analysis for improved inversion of probability tomography with gravity gradiometry data[J]. Journal of Applied Geophysics, 2017, 144:18-27.
doi: 10.1016/j.jappgeo.2017.06.009
[15] Hou Z L, Huang D N, Wang E D, et al. 3D density inversion of gravity gradiometry data with a multilevel hybrid parallel algorithm[J]. Applied Geophysics, 2019, 16(2):141-152.
doi: 10.1007/s11770-019-0763-4
[16] 周雪, 于平, 翁爱华, 等. 基于MPI和OpenMP的重力及重力梯度数据并行正演算法研究[J]. 世界地质, 2018, 37(3):897-904.
[16] Zhou X, Yu P, Weng A H, et al. Parallel forward modelling algorithm with gravity and gravity gradient data based on MPI and OpenMP[J]. Global Geology, 2018, 37(3):897-904.
[17] 陈国良. 并行计算:结构·算法·编程[M]. 北京: 高等教育出版社, 2003:83-88.
[17] Chen G L. Parallel: construction· algorithms· programming [M]. Beijing: Higher Education Press, 2003:83-88.
[18] Shen W S, Michael H R, Kang D, et al. A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion[J]. Geophys. J. Int., 2016, 206(2):954-979.
doi: 10.1093/gji/ggw175
[19] Brocher T M. Empirical relations between elastic wavespeeds and density in the Earth’s crust[J]. Bull. Seismol. Soc. Am., 2005, 95(6):2081-2092.
doi: 10.1785/0120050077
[20] Pavlis N K, Holmes S A, Kenyon S C, et al. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008)[J]. J. Geophys. Res., 2012, 117(4):B04406.
[1] 王祥, 郭良辉. 球坐标系密度界面反演方法及在华南大陆的应用[J]. 物探与化探, 2020, 44(5): 1161-1171.
[2] 李午阳, 张健, 林巍. 基于CUDA的GPU并行优化重力三维反演[J]. 物探与化探, 2016, 40(1): 179-184.
[3] 李逢春, 王润秋, 赵薇薇, 杜清波, 郭武, 王汉钧. 地震三维观测系统共中心点面元属性的并行计算方法[J]. 物探与化探, 2015, 39(5): 1074-1078.
[4] 周旋, 金瑜, 许春梅. 基于三维地质建模的点元法重力正演——以某大型铁矿为例[J]. 物探与化探, 2015, 39(3): 490-495.
[5] 李少华, 喻思羽, 王军, 宋道万, 史敬华, 李君. 并行布尔模拟算法[J]. 物探与化探, 2013, 37(4): 723-725,733.
[6] 陈召曦, 孟小红, 刘国峰, 郭良辉. 基于GPU的任意三维复杂形体重磁异常快速计算[J]. 物探与化探, 2012, 36(1): 117-121.
[7] 安玉林, 张明华, 黄金明, 乔计花. 纯球坐标系内各项重力校正值计算方案和计算过程[J]. 物探与化探, 2010, 34(6): 697-705.
[8] 顾观文, 梁萌, 吴文鹂. 基于并行处理的CSAMT拟二维反演解释[J]. 物探与化探, 2010, 34(3): 399-402.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com