Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (5): 1157-1166    DOI: 10.11720/wtyht.2022.0028
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
二连盆地北部玄武岩覆盖区电性结构与铀成矿环境研究
喻翔1,2(), 汪硕3(), 胡英才3, 段书新3
1.清华大学 能源动力与工程系,北京 100084
2.中国核工业地质局, 北京 100029
3.核工业北京地质研究院 铀资源勘查与评价技术重点实验室,北京 100029
Study on electrical structure and uranium metallogenic environment of basalt-covered area in the northern Erlian Basin
Yu Xiang1,2(), Wang Shuo3(), Hu Ying-Cai3, Duan Shu-Xin3
1. Department of Energy and Power Engineering, Tsinghua Vniversity, Beijing 100084, China
2. China Nuclear Geology, Beijing 100029, China
3. CNNC Key Laboratory of Uranium Resources Exploration and Evaluation Technology, Beijing Research Institute of Uranium Geology,Beijing 100029, China
全文: PDF(7625 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

二连盆地砂岩型铀矿集中产出在巴—赛—齐古河谷内。古河谷北部多被玄武岩覆盖,增加了铀矿勘探的难度。根据玄武岩覆盖区的电性特征,优选并开展音频大地电磁测量(AMT),获取了断裂、砂体、玄武岩展布和基底、构造格架等铀成矿信息,为评价区内找矿前景提供深部电性数据支撑。玄武岩覆盖区存在玄武岩盖层、沉积地层和基底三元电性结构。区内有利铀成矿的赛罕组砂体和断裂较为发育,深部热流体可以为铀的叠加成矿提供热源。铀矿勘探需关注近玄武岩盖层的沉积地层的铀聚集。另兼顾铀源条件,建议查明玄武岩覆盖区以NNW走向的断裂展布,为热流体叠加成矿的铀矿勘探提供依据。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
喻翔
汪硕
胡英才
段书新
关键词 砂岩型铀矿玄武岩大地电磁探测二连盆地成矿作用    
Abstract

Sandstone type uranium deposits in Erlian Basin are concentrated in the Ba-Sai-Qi ancient channel. The northern part of the channel is mostly covered by basalt, which increases the difficulty of uranium exploration. According to the electrical characteristics of the basalt-covered area, the audio frequency magnetotelluric survey (AMT) was optimized and carried out to obtain uranium metallogenic information such as fracture, sand body, basalt distribution, basement, and tectonic framework, providing deep electrical data support for evaluating the prospecting prospect in the area. There are ternary electrical structures-basalt cap, sedimentary strata and basement rock in basalt-covered area. The sand bodies and fractures of Saihan Formation favorable for uranium mineralization are well developed in the area, and the deep thermal fluid can provide heat source for uranium superimposed mineralization. Uranium accumulation in sedimentary strata near basalt caprock should be considered in uranium exploration, and also uranium source conditions. Therefore, it is suggested to find out the NNW-trending fracture distribution in the west of basalt-covered area so as to provide a basis for uranium exploration of hydrothermal superimposed mineralization.

Key wordssandstone-type uranium deposit    basalt    acoustic magnetotelluric method    Erlian Basin    mineralization
收稿日期: 2022-01-26      修回日期: 2022-05-29      出版日期: 2022-10-20
ZTFLH:  P631  
基金资助:中核集团集中研发项目“龙灿”示范工程科研项目(第二阶段)(中核科发(2018)111号);中核集团青年英才项目(物QNYC2020-1)
通讯作者: 汪硕
作者简介: 喻翔(1988-),男,江西赣州人,从事铀矿地质与勘查技术研究和管理工作。Email:yuxiang219@126.com
引用本文:   
喻翔, 汪硕, 胡英才, 段书新. 二连盆地北部玄武岩覆盖区电性结构与铀成矿环境研究[J]. 物探与化探, 2022, 46(5): 1157-1166.
Yu Xiang, Wang Shuo, Hu Ying-Cai, Duan Shu-Xin. Study on electrical structure and uranium metallogenic environment of basalt-covered area in the northern Erlian Basin. Geophysical and Geochemical Exploration, 2022, 46(5): 1157-1166.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.0028      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I5/1157
Fig.1  内蒙古二连盆地二级构造单元划分
Fig.2  马尼特坳陷玄武岩覆盖区地质情况及AMT测线布置
1—第四系;2—新近系通古尔组、大庙组并层;3—新近系宝格德乌拉组;4—白垩系二连组;5—白垩系腾格尔组;6—侏罗系兴安岭群;7—侏罗系阿拉坦合力群;8—二叠系;9—石炭系;10—泥盆系;11—志留系;12—奥陶系;13—元古宇;14—第四纪玄武岩;15—白垩纪玄武岩;16—侏罗纪花岗岩;17—三叠纪花岗岩;18—二叠纪闪长玢岩;19—二叠纪花岗岩;20—石炭纪超基性岩;21—石炭纪辉绿岩;22—泥盆纪超基性岩;23—泥盆纪辉长岩;24—地质界线;25—AMT测线
Fig.3  AMT测点视电阻率(a)及相位(b)曲线
Fig.4  L01线地面电磁法反演电阻率断面与钻孔对比
Fig.5  L01线地面0~50 km段、50~99.6 km段电磁法反演电阻率剖面(a)、(c)及地质解释(b)、(d)
Fig.6  L09线地面0~50 km、50~99.6 km段电磁法反演电阻率断面(a)、(c)及地质解释(b)、(d)
Fig.7  玄武岩覆盖区平面综合地质解释
Fig.8  玄武岩覆盖区推断下白垩统赛罕组地层三维地质模型
[1] 张金带. 我国砂岩型铀矿成矿理论的创新和发展[J]. 铀矿地质, 2016, 32(6):321-332.
[1] Zhang J D. Innovation and development of metallogenic theory for sandstone-type uranium deposit in China[J]. Uranium Geology, 2016, 32(6):321-332.
[2] 聂逢君, 李满根, 邓居智, 等. 内蒙古二连裂谷盆地“同盆多类型”铀矿床组合与找矿方向[J]. 矿床地质, 2015, 34(4):711-729.
[2] Nie F J, Li M G, Deng J Z, et al. Multiple type uranium deposit assemblage and uranium exploration in Erlian rift basin, Inner Mongolia[J]. Mineral Deposits, 2015, 34(4):711-729.
[3] 吴曲波, 陈聪, 杨龙泉, 等. 二连盆地中部古河道砂岩型铀矿综合地球物理响应特征研究[J]. 地质学报, 2021, 95(8): 2521-2536.
[3] Wu Q B, Chen C, Yang L Q, et al. Study of integrated geophysical characteristics of paleo-valley sandstone-type uranium deposits in the middle of the Erlian Basin[J]. Acta Geologica Sinica, 2021, 95(8): 2521-2536.
[4] 刘波, 杨建新, 彭云彪, 等. 二连盆地中东部含铀古河谷构造建造及典型矿床成矿模式研究[J]. 矿床地质, 2017, 36(1):126-142.
[4] Liu B, Yang J X, Peng Y B, et al. Study of structure and formation in uranium-bearing paleo-valley and typical metallogenic models in eastern part of Erlian Basin[J]. Mineral Deposits, 2017, 36(1):126-142.
[5] 康世虎, 杨建新, 刘武生, 等. 二连盆地中部古河谷砂岩型铀矿成矿特征及潜力分析[J]. 铀矿地质, 2017, 33(4): 206-214.
[5] Kang S H, Yang J X, Liu W S, et al. Mineralization characteristics and potential of paleo-valley type uranium deposit in central Erlian Basin,Inner Mongolia[J]. Uranium Geology, 2017, 33(4):206-214.
[6] Bonnetti C, Cuney M, Bourlange S, et al. Primary uranium sources for sedimentary-hosted uranium deposits in NE China: Insight from basement igneous rocks of the Erlian Basin[J]. Mineralium Deposita, 2017, 52(3): 297-315.
doi: 10.1007/s00126-016-0661-0
[7] 李西得, 刘军港. 二连盆地卫镜岩体风化作用地球化学特征研究[J]. 铀矿地质, 2020, 36(5):336-345.
[7] Li X D, Liu J G. Study on weathering feature of Weijing Pluton in Erlian Basin, Inner Mongolia[J]. Uranium Geology, 2020, 36(5):336-345.
[8] 马杏垣, 刘和甫, 王维襄, 等. 中国东部中新生代裂陷作用及伸展构造[J]. 地质学报, 1983, 57(1):22-23.
[8] Ma X Y, Liu H F, Wang W X, et al. Meso-Cenozoic taphrogeny and extensional tectonics in eastern China[J]. Acta Geology Sinica, 1983, 57(1):22-23.
[9] 漆家福, 赵贤正, 李先平, 等. 二连盆地早白垩世断陷分布及其与基底构造的关系[J]. 地学前缘, 2015, 22(3):118-120.
doi: 10.13745/j.esf.2015.03.010
[9] Qi J F, Zhao X Z, Li X P, et al. The distribution of early cretaceous faulted-sags and their relationship with basement structure within Erlian Basin[J]. Earth Science Frontiers, 2015, 22(3): 118-120.
[10] 聂逢君, 陈安平, 彭云彪, 等. 二连盆地古河道砂岩型铀矿[M]. 北京: 地质出版社, 2010.
[10] Nie F J, Chen A P, Peng Y B, et al. Erlian Basin paleo-channel sandstone-type uranium deposits[M]. Beijing: Geological Publishing House, 2010.
[11] 鲁超, 焦养泉, 彭云彪, 等. 二连盆地马尼特坳陷西部幕式裂陷作用对铀成矿的影响[J]. 地质学报, 2016, 90(12):3483-3491.
[11] Lu C, Jiao Y Q, Peng Y B, et al. Effect of the episodic rifting in the western Manite depression in Erlian Basin on sandstone type uranium mineralization[J]. Acta Geologica Sinica, 2016, 90(12):3483-3491.
[12] 刘波, 杨建新, 秦彦伟, 等. 二连盆地中东部赛汉组古河谷砂岩型铀矿床控矿成因相研究[J]. 地质与勘探, 2016, 52(6):1037-1047.
[12] Liu B, Yang J X, Qin Y W, et al. Research on the ore-controlling genetic facies of the sandstone-type uranium deposits in the paleovalley of Saihan Formation of the Erlian Basin[J]. Geology and Exploration, 2016, 52(6):1037-1047.
[13] 刘波, 苗爱生, 彭云彪, 等. 兴蒙地区中—新生代盆地铀成矿特征、机理及其动力学背景研究进展[J]. 地质学报, 2020, 94(12):3689-3711.
[13] Liu B, Miao A S, Peng Y B, et al. Research advances in uranium metallogenic characteristics, mechanism and dynamic background in the Mesozoic-Cenozoic basins of the Xingmeng area, North China[J]. Acta Geologica Sinica, 2020, 94 (12):3689-3711.
[14] Ho K S, Liu Y, Chen J C, et al. Elemental and Sr-Nd-Pb isotopic compositions of late Cenozoic Abaga basalts,Inner Mongolia: Implications for petrogenesis and mantle process[J]. Geochemical Journal, 2008, 42:339-357.
doi: 10.2343/geochemj.42.339
[15] Zhang M L, Guo Z F. Origin of Late Cenozoic Abaga-Dalinuoer basalts, eastern China: Implications for a mixed pyroxenite-peridotite source related with deep subduction of the Pacific slab[J]. Gondwana Research, 2016, 37:130-151.
doi: 10.1016/j.gr.2016.05.014
[16] 封志兵, 聂逢君, 江丽, 等. 重力场特征与砂岩型铀矿的关系及地质意义[J]. 现代地质, 2014, 28(4):841-849.
[16] Feng Z B, Nie F J, Jiang L, et al. Correlation of gravity field characteristics with sandstone-type uranium deposit and its geological significance[J]. Geoscience, 2014, 28(4):841-849.
[17] 封志兵, 聂冰锋, 聂逢君, 等. 地球物理方法在砂岩型铀矿勘查中的应用进展[J]. 物探与化探, 2021, 45(5): 1179-1188.
[17] Feng Z B, Nie B F, Nie F J, et al. Application progress of geophysical methods in exploration of sandstone-type uranium deposit[J]. Geophysical and Geochemical Exploration, 2021, 45(5): 1179-1188.
[18] 肖新建, 李子颖, 郭华, 等. 俄罗斯砂岩型铀矿的新近研究进展[J]. 铀矿地质, 2003, 19(1):34-41.
[18] Xiao X J, Li Z Y, Guo H, et al. The latest research achievements of sandstone-type uranium deposits in Russia[J]. Uranium Geology, 2003, 19(1):34-41.
[19] 聂逢君, 严兆彬, 夏菲, 等. 内蒙古开鲁盆地砂岩型铀矿热流体作用[J]. 地质通报, 2017, 36(10):1850-1866.
[19] Nie F J, Yan Z B, Xie F, et al. Hot fluid flows in the sandstone-type uranium deposit in the Kailu basin, Northeast China[J]. Geological Bulletin of China, 2017, 36(10):1850-1866.
[20] 董昕昱, 陈欣, 陶尔侃. 白面石矿田贯入玄武岩与铀成矿作用研究[J]. 铀矿地质, 2021, 37(3):406-411.
[20] Dong X Y, Chen X, Tao E K. Research on intruding basalt and uranium mineralization in Baimianshi Ore Field[J]. Uranium Geology, 2021, 37(3):406-411.
[1] 许第桥, 李茂. 二连盆地宽频大地电磁法数据精细反演处理研究——以满都拉图地区的数据为例[J]. 物探与化探, 2023, 47(4): 994-1001.
[2] 朱卫平. 长江铀矿田花岗岩与铀成矿年代学研究进展[J]. 物探与化探, 2022, 46(6): 1327-1337.
[3] 陈念楠, 李满根, 关宝文, 宋志杰, 段建兵, 李西得, 刘武生, 刘颖, 范鹏飞. 二连盆地塔北凹陷西部早白垩世断—坳发育特征研究[J]. 物探与化探, 2022, 46(5): 1149-1156.
[4] 伍显红, 许第桥, 李茂. 宽频大地电磁法在二连盆地铀矿资源评价中的试验应用[J]. 物探与化探, 2022, 46(4): 830-837.
[5] 封志兵, 聂冰锋, 聂逢君, 江丽, 夏菲, 李满根, 严兆彬, 何剑锋, 程若丹. 地球物理方法在砂岩型铀矿勘查中的应用进展[J]. 物探与化探, 2021, 45(5): 1179-1188.
[6] 黄笑, 余弘龙, 江丽, 王殿学, 周文博, 马振宇, 张亮亮, 唐国龙. 钍归一化法在松辽盆地开鲁坳陷大林地区地面伽马能谱资料处理中的应用研究[J]. 物探与化探, 2021, 45(2): 316-322.
[7] 杨玉勤, 张翔, 石连成, 邓德伟. 砂岩型铀矿航磁微弱异常提取方法[J]. 物探与化探, 2021, 45(1): 29-36.
[8] 梁建刚, 杨为民, 孙大鹏, 匡海阳. 二维地震勘探在大庆长垣南端砂岩型铀矿勘查中的应用[J]. 物探与化探, 2020, 44(6): 1322-1328.
[9] 吴曲波, 曹成寅, 李子伟. 准噶尔盆地五彩湾地区砂岩型铀矿地震勘探技术[J]. 物探与化探, 2018, 42(6): 1134-1143.
[10] 吴曲波, 李子伟, 潘自强, 曹成寅, 乔宝平. 砂岩型铀矿地震勘探技术应用现状与发展[J]. 物探与化探, 2017, 41(4): 648-655.
[11] 赵宁博, 付锦, 刘涛, 张东辉. 地形对砂岩型铀矿氡气测量的干扰作用及其修正方法[J]. 物探与化探, 2017, 41(4): 667-671.
[12] 徐善法, 刘汉彬, 王玮, 张必敏, 姚文生. 深穿透地球化学方法在十红滩砂岩型铀矿中的试验研究[J]. 物探与化探, 2017, 41(2): 189-193.
[13] 吴曲波, 曹成寅, 潘自强, 李子伟, 乔宝平. 锤击小折射法地表调查的试验效果[J]. 物探与化探, 2016, 40(2): 380-384.
[14] 郭友钊, 郭心玮, 王兴春, 李磊, 吴树宽. 东昆仑夏日哈木铜镍硫化物矿床成矿作用的磁参数Q值试研究[J]. 物探与化探, 2015, 39(6): 1278-1283.
[15] 刘武生, 李必红, 史清平, 贾立城, 赵兴齐. 二连盆地砂岩型铀矿土壤氡异常模型及应用[J]. 物探与化探, 2015, 39(2): 234-239.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com