Please wait a minute...
E-mail Alert Rss
 
物探与化探  2021, Vol. 45 Issue (6): 1425-1438    DOI: 10.11720/wtyht.2021.1470
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
相山矿田游坊地区地电提取找矿预测
唐瑞1(), 欧阳菲1(), 罗先熔1, 郑超杰1, 汤国栋1, 刘攀峰1, 蔡叶蕾1, 杨笑笑2
1.桂林理工大学 地球科学学院隐伏矿床预测研究所,广西 桂林 541004
2.广西三一〇核地质大队,广西 桂林 541000
The prediction of electrochemical prospecting in Youfang area of the Xiangshan orefield
TANG Rui1(), OUYANG Fei1(), LUO Xian-Rong1, ZHENG Chao-Jie1, TANG Guo-Dong1, LIU Pan-Feng1, CAI Ye-Lei1, YANG Xiao-Xiao2
1. Institute for Prediction of Hidden Deposits, School of Geosciences, Guilin University of Technology, Guilin 541004,China
2. No.310 Geological Party of Guangxi Zhuang Autonomous Region,Guilin 541000,China
全文: PDF(15559 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

为在江西相山矿田游坊地区实现找矿突破,在该区开展地电提取测量工作进行深部找矿预测。研究发现:异常明显受断裂控制,主要沿控矿断裂及断裂交汇处展布;运用聚类分析和因子分析发现各微量元素之间具有显著相关性,据此得出相应的元素组合:F1因子(Ti-V-Mo-Th-U)、F2因子(As-Pb-Sb)、F3因子(Co-Ni);铀钍比的空间分布与AMT推测基底深度呈现明显正相关关系,推测主要受火山岩厚度的控制。综合地电提取元素异常特征和相山矿田成矿规律,建立综合地质—地电化学找矿模式,并在研究区内圈定出两个相应的靶区,其中1号靶区具有良好找矿前景。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
唐瑞
欧阳菲
罗先熔
郑超杰
汤国栋
刘攀峰
蔡叶蕾
杨笑笑
关键词 相山铀矿地电提取异常特征    
Abstract

In order to make a breakthrough in prospecting in the Youfang area of the Xiangshan ore field, the authors carried out geoelectric extraction and surveying in this area for deep prospecting prediction. It is found that the anomalies are obviously controlled by the faults, and are mainly distributed along the ore-controlling faults and the intersection of the faults. Cluster analysis and factor analysis reveal that there is a significant correlation between the trace elements, thus forming the corresponding element combinations: F1 factor (Ti、V、Mo、Th、U), F2 factor (As、Pb、Sb), and F3 factor (Co、Ni). The spatial distribution of uranium-thorium ratios shows a significant positive correlation with the estimated base depth of AMT, controlled by volcanic rock thickness. The authors synthesized the abnormal features of geoelectrically extracted elements and the mineralization regularity of the Xiangshan ore field, established a comprehensive geological-geoelectrochemical prospecting model, and delineated two corresponding targets in the study area, of which No.1 target area has good prospecting prospect.

Key wordsXiangshan    uranium ore    geo-electric extraction    characteristics of anomaly
收稿日期: 2020-09-23      出版日期: 2021-12-21
:  P632  
基金资助:国家重点研发计划“华南热液型铀矿基地深部探测技术示范”(2017YFC0602600);广西教育厅项目(2017KY0239)
通讯作者: 欧阳菲
作者简介: 唐瑞(1995-),男,硕士研究生,主要从事地球化学研究工作。Email: 945087837@qq.com
引用本文:   
唐瑞, 欧阳菲, 罗先熔, 郑超杰, 汤国栋, 刘攀峰, 蔡叶蕾, 杨笑笑. 相山矿田游坊地区地电提取找矿预测[J]. 物探与化探, 2021, 45(6): 1425-1438.
TANG Rui, OUYANG Fei, LUO Xian-Rong, ZHENG Chao-Jie, TANG Guo-Dong, LIU Pan-Feng, CAI Ye-Lei, YANG Xiao-Xiao. The prediction of electrochemical prospecting in Youfang area of the Xiangshan orefield. Geophysical and Geochemical Exploration, 2021, 45(6): 1425-1438.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2021.1470      或      https://www.wutanyuhuatan.com/CN/Y2021/V45/I6/1425
Fig.1  相山盆地地质构造略图(据董保平[25]修改)
1—白垩系上统龟峰群;2—白垩系下统鹅湖岭组;3—白垩系下统打鼓顶组;4—三叠系上统安源组;5—石炭系下统华山岭组;6—新元古界;7—次斑状花岗岩;8—花岗岩;9—实测、推测断层;10—赣杭断裂带;11—赣杭构造带范围;12—红色断陷盆地;13—火山盆地;14—铀矿床;15—相山矿田;16—研究区
Fig.2  游坊研究区地质
Fig.3  地电提取提取迁移模式简图(据罗先熔[27]修改)
Fig.4  64线地质—地化异常综合剖面(据王东[29]修改)
1—第四系;2—白垩系下统鹅湖岭下段;3—白垩系下统鹅湖岭上段;4—白垩系下统打鼓顶组下段;5—白垩系下统打鼓顶组上段;6—新元古界;7—次斑状花岗岩;8—铀矿体;9—空隙;10—断裂;11—点位及点号;12—钻孔及编号
指标 Ti V Co Ni As Cu Zn Mo Sb Pb Th U
算数平均值 4.69 0.37 0.30 0.63 2.41 19.33 0.16 0.01 0.04 3.18 0.20 0.10
中值 3.53 0.31 0.14 0.41 1.06 7.86 0.12 0.01 0.03 1.53 0.17 0.06
众数 2.24 0.26 0.13 0.42 0.58 4.76 0.10 0.01 0.03 1.50 0.15 0.04
标准差 5.20 0.40 0.59 0.68 6.38 42.94 0.27 0.01 0.06 15.28 0.28 0.26
最小值 1.16 0.13 0.04 0.18 0.41 2.06 0.03 0.00 0.01 0.85 0.04 0.01
最大值 76.36 7.08 5.73 6.77 98.49 499.75 4.18 0.13 0.73 289.74 5.29 4.76
偏度 8.70 12.81 5.95 4.48 10.71 7.01 12.26 6.70 8.97 17.23 15.76 14.77
峰度 103.25 205.89 43.46 27.03 142.63 60.77 168.01 66.67 101.71 318.10 285.21 255.09
变异系数 1.11 1.07 1.98 1.08 1.70 2.65 2.22 0.86 1.28 4.80 1.38 2.52
Table 1  地电提取元素含量统计参数
Fig.5  元素含量对数转换后的箱状图
Fig.6  聚类分析树状图
元素 Ti V Co Ni Cu Zn As Mo Sb Pb Th U
Ti 1.000
V 0.840 1.000
Co 0.533 0.570 1.000
Ni 0.562 0.501 0.563 1.000
Cu 0.332 0.397 0.248 0.341 1.000
Zn 0.074 0.107 0.047 0.101 0.116 1.000
As 0.743 0.658 0.366 0.413 0.325 0.068 1.000
Mo 0.674 0.720 0.342 0.452 0.327 0.107 0.718 1.000
Sb 0.312 0.261 0.111 0.294 0.164 -0.002 0.664 0.590 1.000
Pb 0.542 0.356 0.183 0.234 0.183 0.039 0.904 0.469 0.661 1.000
Th 0.810 0.891 0.488 0.406 0.366 0.122 0.642 0.660 0.139 0.368 1.000
U 0.715 0.923 0.527 0.422 0.411 0.111 0.619 0.688 0.202 0.307 0.887 1.000
Table 2  因子分析的变量相关系数矩阵
元素 F1 F2 F3
Ti 0.740 - 0.363 0.371
V 0.894 - 0.193 0.318
Co 0.378 0.005 0.782 -
Ni 0.205 0.220 0.864 -
As 0.529 0.797 - 0.161
Mo 0.622 - 0.539 0.209
Sb -0.003 0.900 - 0.143
Pb 0.234 0.883 - 0.022
Th 0.935 - 0.140 0.185
U 0.911 - 0.132 0.231
方差贡献率/% 39.579 27.690 17.746
累计方差贡献率/% 39.579 67.268 85.015
Table 3  正交旋转因子载荷矩阵及因子方差贡献累计
元素 背景值 标准差 外带下限 中带下限 内带下限
Ti 3.576 1.367 4.942 6.309 9.043
V 0.302 0.081 0.383 0.464 0.627
Co 0.127 0.046 0.172 0.218 0.309
Ni 0.384 0.119 0.503 0.622 0.860
As 0.121 0.044 0.164 0.208 0.296
Mo 0.010 0.004 0.014 0.019 0.028
Sb 0.035 0.017 0.052 0.069 0.103
Pb 1.511 0.380 1.891 2.271 3.031
Th 0.169 0.063 0.232 0.295 0.422
U 0.060 0.024 0.084 0.108 0.156
Table 4  江西相山矿区各元素异常分带值
Fig.7  游坊地区地电提取单元素异常平面图及w(U)/w(Th)比值平面
1—新元古界;2—白垩系下统鹅湖岭组;3—白垩系下统打鼓顶组;4—次斑状花岗岩;5—地电测网;6—断裂构造;7—地质界线;8—异常内带;9—异常中带;10—异常外带;11—地名;12—AMT推测基底深度
Fig.8  游坊地区元素组合异常
1—新元古界;2—白垩系下统鹅湖岭组;3—白垩系下统打鼓顶组;4—次斑状花岗岩;5—地电测网;6—断裂构造;7—地质界线;8—异常内带;9—异常中带;10—异常外带;11—地名
Fig.9  地质—地电化学综合找矿模式
1—新元古界;2—白垩系下统鹅湖岭组;3—次斑状花岗岩;4—断裂构造; 5—地质界线;6—矿体;7—不整合接触
Fig.10  相山矿区靶区预测
1—新元古界;2—白垩系下统鹅湖岭组;3—白垩系下统打鼓顶组;4—次斑状花岗岩;5—地电测网;6—断裂构造;7—地质界线;8—AMT推测基底深度;9—2号靶区;10—1号靶区;11—地名
[1] 李子颖, 张万良. 江西相山矿田主要铀矿化类型及其地球化学特征对比研究[J]. 现代地质, 2016, 30(1):1-16.
[1] Li Z Y, Zhang W L. Main uranium mineralization types and their comparison of geochemical characteristics in Xiangshan orefield, Jiangxi[J]. Geoscience, 2016, 30(1):1-16.
[2] 田明明, 李子颖, 聂江涛, 等. 江西相山铀矿田中西部鹅湖岭组与打鼓顶组碎斑流纹岩特征对比及其成因探讨[J/OL]. 地球科学, 2020:1-35[2020-08-10]. http://kns.cnki.net/kcms/detail/42.1874.P.20200714.0954.004.html.
[2] Tian M M, Li Z Y, Nie J T, et al. A comparative study and its genesis of porphyroclastic rhyolite from Ehuling and Daguding formations in the midwest of Xiangshan uranium orefield, Jiangxi Province [J/OL]. Earth Science, 2020:1-35[2020-08-10]. http://kns.cnki.net/kcms/detail/42.1874.P.20200714.0954.004.html.
[3] 郭建, 李子颖, 聂江涛, 等. 江西相山铀矿田深部多金属矿化中黄铁矿微量元素地球化学特征[J]. 岩石矿物学杂志, 2020, 39(3):257-266.
[3] Guo J, Li Z Y, Nie J T, et al. Trace-element geochemical characteristics of pyrite in polymetallic mineralization in the depth of the Xiangshan uranium orefield, Jiangxi Province[J]. Acta Petrologica et Mineralogica, 2020, 39(3):257-266.
[4] 刘斌, 陈卫锋, 高爽, 等. 相山铀矿田黄铁矿微量元素、硫同位素特征及其地质意义[J]. 矿床地质, 2019, 38(6):1321-1335.
[4] Liu B, Chen W F, Gao S, et al. Sulfur isotope and trace element geochemical characteristics of pyrite in Xiangshan uranium orefield and its geological significance[J]. Mineral Deposits, 2019, 38(6):1321-1335.
[5] 林锦荣, 胡志华, 王勇剑, 等. 相山铀矿田铀多金属成矿时代与成矿热历史[J]. 岩石学报, 2019, 35(9):2801-2816.
[5] Lin J R, Hu Z H, Wang Y J, et al. Ore-forming age and thermal history of uranium-polymetallic mineralization in Xiangshan uranium orefield[J]. Acta Petrologica Sinica, 2019, 35(9):2801-2816.
[6] 邓康乐. 苏联化探工作进展[J]. 国外地质勘探技术, 1981(3):1-9.
[6] Deng K L. Progress in soviet geophysical exploration[J]. Foreign Geoexploration Technology, 1981(3):1-9.
[7] 罗先熔, 周涛发. 吉林红旗岭铜镍矿床地电化学异常特征、成晕机制及找矿预测[J]. 吉林大学学报:地球科学版, 2004(2):304-308.
[7] Luo X R, Zhou T F. Feature and forming mechanism of geo-electrochemical anomaly of the Hongqiling copper -nickel deposit and its prediction, Jilin Province[J]. Journal of Jilin University:Earth Science Edition, 2004(2):304-308.
[8] 文美兰, 罗先熔, 熊健, 等. 地电化学法在南澳大利亚寻找隐伏金矿的研究[J]. 地质与勘探, 2010, 46(1):153-159.
[8] Wen M L, Luo X R, Xiong J, et al. Electro-geochemical method in the search of concealed gold deposits in south Australia[J]. Geology and Exploration, 2010, 46(1):153-159.
[9] 王光洪, 罗先熔, 单江涛, 等. 第四纪沉积物覆盖区地电化学法寻找隐伏金矿——以安徽凤阳地区为例[J]. 桂林理工大学学报, 2010, 30(1):52-55.
[9] Wang G H, Luo X R, Shan J, et al. Geoelectro-chemical method for prospecting gold mine in quaternary sediment region—A case from Fengyang, Anhui[J]. Journal of Guilin University of Technology, 2010, 30(1):52-55.
[10] 王葆华, 文美兰, 欧阳菲, 等. 草原覆盖区铅锌银矿床地电化学异常特征及找矿预测——以内蒙古哈达特陶勒盖矿区为例[J]. 桂林理工大学学报, 2011, 31(02):192-197.
[10] Wang B H, Wen M L, Ouyang F, et al. Features of geo-electrochemical anomaly and Pb-Zn-Ag exploration forecast in plains—Taking Hardattolgoi lead-zinc-silver polymetallic deposit of Inner Mongolia as an example[J]. Journal of Guilin University of Technology, 2011, 31(2):192-197.
[11] 黄学强, 罗先熔, 刘巍, 等. 凹陷盆地铜镍多金属矿床地电化学异常特征及找矿预测[J]. 物探与化探, 2013, 37(2):199-205.
[11] Huang X Q, Luo X R, Liu W, et al. Features of geo-electrochemical anomaly and copper-nickel prospecting prognosis in Hollow Basin[J]. Geophysical and Geochemical Exploration, 2013, 37(2):199-205.
[12] 刘攀峰, 文美兰, 杨龙坤, 等. 高原寒冷区地电化学提取技术试验与找矿预测[J]. 中国地质, 2015, 42(6):2000-2007.
[12] Liu P F, Wen M L, Yang L K, et al. Geo-electrochemical extraction technology test and the prospecting prediction in cold plateau area[J]. Geology in China, 2015, 42(6):2000-2007.
[13] 杨笑笑, 罗先熔, 文美兰, 等. 地电化学法在豫西崤山黄土覆盖区找矿中的应用——以洛宁县石龙山预查区为例[J]. 物探与化探, 2019, 43(2):244-256.
[13] Yang X X, Luo X R, Wen M L, et al. The application of geo-electrochemical methods to prospecting in the loess-covered Xiaoshan Mountain, western Henan Province: A case study ofthe Shilongshan gold polymetallic ore prospecting area in Luoning County[J]. Geophysical and Geochemical Exploration, 2019, 43(2):244-256.
[14] 文美兰, 罗先熔, 熊健. 江西某地区地电化学法寻找隐伏铀矿研究[J]. 矿产勘查, 2011, 2(4):404-408.
[14] Wen M L, Luo X R, Xiong J. Electro-geochemical method in search of concealed uranium deposits in a area of Jiangxi province[J]. Mineral Exploration, 2011, 2(4):404-408.
[15] 李世铸, 罗先熔, 唐志祥, 等. 火山岩地区地电提取法寻找隐伏铀铅锌矿[J]. 物探与化探, 2014, 38(3):441-446.
[15] Li S Z, Luo X R, Tang Z X, et al. The application of geological CHIM method to the prospecting for concealed uranium-lead-zinc deposits in vocanic rock areas[J]. Geophysical and Geochemical Exploration, 2014, 38(3):441-446.
[16] 满荣浩, 罗先熔, 易超. 地电化学法在鄂尔多斯盆地东胜地区寻找隐伏铀矿中的应用[J]. 矿物岩石地球化学通报, 2015, 34(5):1007-1013.
[16] Man R H, Luo X R, Yi C. Application of the geo-electrochemical method on prospecting for concealed uranium deposits in the Dongsheng area of the Ordos Basin[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 2015, 34(5):1007-1013.
[17] 蓝天, 罗先熔, 陈晓青, 等. 地电化学方法在浙江江山——长台地区寻找隐伏铀矿的应用[J]. 世界地质, 2017, 36(3):976-988.
[17] Lan T, Luo X R, Chen X Q, et al. Application of geo-electro-chemical methods in searching hidden uranium deposits in Jiangshan-Changtai area of Zhejiang[J]. Global Geology, 2017, 36(3):976-988.
[18] 黄宁宁, 罗先熔, 易超, 等. 因子分析在内蒙东胜地区寻找隐伏铀矿中的应用[J]. 桂林理工大学学报, 2019, 39(4):856-862.
[18] Huang N N, Luo X R, Yi C, et al. Application of factor analysis in search for concealeduranium deposit in Dongsheng area, Inner Mongolia[J]. Journal of Guilin University of Technology, 2019, 39(4):856-862.
[19] 侯冬梅, 罗先熔, 王建历, 等. 地球电化学法在中国—澳大利亚两国寻找隐伏铀矿中的对比研究[J]. 地质通报, 2012, 31(1):126-135.
[19] Hou D M, Luo X R, Wang J L, et al. A comparative study of the prospecting for hidden uraniumdeposits by applying geo-electrochemical method in China and Australia[J]. Geological Bulletin of China, 2012, 31(1):126-135.
[20] 文雪琴, 罗先熔, 邵飞, 等. 多种新方法寻找隐伏铀矿床的试验研究[J]. 桂林工学院学报, 2003, 23(1):26-30.
[20] Wen X Q, Luo X R, Shao F, et al. New method study in search of uranium deposit[J]. Journal of Guilin University of Technology, 2003, 23(1):26-30.
[21] 严冰, 胡瑞忠, 周莉, 等. 江西相山铀矿田的稀土元素地球化学特征[J]. 矿业研究与开发, 2012, 32(6):48-52.
[21] Yan B, Hu R Z, Zhou L, et al. Geochemical characteristics of REE in Xiangshan uranium orefield, Jiangxi Province[J]. Mining Research and Development, 2012, 32(6):48-52.
[22] 董保平, 吉高萍, 成霖, 等. 相山铀矿田游坊地区地质特征及找矿方向[J]. 东华理工大学学报:自然科学版, 2013, 36(S2):74-79.
[22] Dong B P, Ji G P, Cheng L, et al. Geologic feature and prospecting direction of Youfang area in Xiangshan uranium orefield[J]. Journal of East China University of Technology:Natural Science, 2013, 36(S2):74-79.
[23] 严冰, 严寒, 周莉, 等. 江西相山火山岩型铀矿 C、O、H、S 同位素特征及意义[J]. 矿物岩石, 2013, 33(3):47-53.
[23] Yan B, Yan H, Zhou L, et al. Isotopic characteristics of C, O, H and S in Xiangshan uranium orefield, Jiangxi Province[J]. Mineralogy and Petrology, 2013, 33(3):47-53.
[24] 胡志华, 林锦荣, 王勇剑, 等. 相山矿田邹家山铀矿床钛铀矿地球化学特征及其成矿意义探讨[J]. 世界核地质科学, 2018, 35(2):63-70.
[24] Hu Z H, Lin J R, Wang Y J, et al. Discussion on geochemical characteristics of the brannerite and its metallogenic significance in Zoujiashan uranium deposit, Xiangshan ore field[J]. World Nuclear Geoscience, 2018, 35(2):63-70.
[25] 董保平. 相山矿田璜田矿区铀成矿地质条件及找矿远景[C]// 江西省地质学会2020年论文汇编I.:江西省地质学会, 2020:192-204.
[25] Dong B P. Geological conditions of uranium mineralization and prospecting prospect of Hangtian area in Xiangshan ore fields[C]// Compilation of 2020 Papers of Jiangxi Geological Society I.:Jiangxi Geological Society, 2020:192-204.
[26] 曾文乐, 陈荣清, 谢国发, 等. 相山矿田铀矿找矿进展及远景分析[J]. 东华理工大学学报:自然科学版, 2019, 42(2):101-107.
[26] Zeng W L, Chen R Q, Xie G F, et al. Prospecting progress and prospective analysis of uranium deposit in Xiangshan ore field[J]. Journal of East China University of Technology:Natural Science, 2019, 42(2):101-107.
[27] 罗先熔. 地电化学成晕机制、方法技术及找矿研究[D]. 合肥:合肥工业大学, 2005.
[27] Luo X R. The mechanism of electrogeochemical halo-formation and the application of electrogeochemical method to exploration of metallic ore deposits[D]. Hefei:Hefei University of Technology, 2005.
[28] 施意华, 杨仲平, 黄俭惠, 等. ICP-MS测定电吸附找矿泡塑样品中微量元素[J]. 光谱学与光谱分析, 2009, 29(6):1687-1690.
[28] Shi Y H, Yang Z P, Huang J H, et al. Determination of trace elements in electrical absorption prospecting polyform sample by inductively coupled plasma mass spectrometry[J]. Spectroscopy and Spectral Analysis, 2009, 29(6):1687-1690.
[29] 王东. 江西相山乐家地区地电提取测量法寻找隐伏铀矿的研究[D]. 桂林:桂林理工大学, 2020.
[29] Wang D. Study on searching for concealed uranium deposits by geoelectrochemical survey in Lejia area, Xiangshan, Jiangxi Province[D]. Guilin:Guilin University of Technology, 2020.
[30] 龚鹏. 地球化学矿致异常空间分析与定量评价[D]. 武汉:中国地质大学(武汉), 2014.
[30] Gong P. Spatial analysis and quantitative evaluation of geochemical anomalies caused by ore bodies[D]. Wuhan:China University of Geosciences(Wuhan), 2014.
[31] 侯景儒. 数学地质浅谈[J]. 地质与勘探, 1977, 13(7):12-19.
[31] Hou J R. Mathematics geology introduction[J]. Geology and Prospecting, 1977, 13(7):12-19.
[32] 罗先熔, 文美兰, 欧阳菲, 等. 勘查地球化学[M]. 北京: 冶金工业出版社, 2007:36-44.
[32] Luo X R, Wen M L, Ouyang F, et al. Exploration geochemistry [M]. Beijing: Metallurgical Industry Press, 2007:36-44.
[33] 刘延斌, 罗先熔, 刘攀峰, 等. 地电化学集成技术在内蒙古格鲁其堆山矿区及外围寻找隐伏铅锌矿的应用[J]. 地质与勘探, 2018, 54(5):1001-1012.
[33] Liu Y B, Luo X R, Liu P F, et al. Application of geo-electrochemical integration technology to search for concealed Pb-Zn ore in the Geluqiduishan mining area and its periphery, Inner Mongolia[J]. Geology and Exploration, 2018, 54(5):1001-1012.
[34] 魏浩, 徐九华, 刘振刚, 等. 内蒙古凉城县草几坝一带土壤化探的数学地质分析[J]. 地质与勘探, 2011, 47(3):473-482.
[34] Wei H, Xu J H, Liu Z G, et al. Analysis of mathematical geology for soil geochemistry in the Caojiba area of Liangcheng county, Inner Mongolia[J]. Geology and Exploration, 2011, 47(3):473-482.
[35] 周顶, 庄光军, 张东林, 等. 河南省栾川县红庄—元岭金矿床原生晕轴向分带特征及深部成矿远景评价[J]. 地质与勘探, 2015, 51(6):1126-1137.
[35] Zhou D, Zhuang G J, Zhang D L, et al. Axial zoning characteristics of primary haloes and evaluation of deep mineralization prospect of the Hongzhuang-Yuanling gold deposit in Luanchuan Couty, Henan Province[J]. Geology and Exploration, 2015, 51(6):1126-1137.
[36] 赵少卿, 魏俊浩, 高翔, 等. 因子分析在地球化学分区中的应用:以内蒙古石板井地区1∶5万岩屑地球化学测量数据为例[J]. 地质科技通报, 2012, 31(2):27-34.
[36] Zhao S Q, Wei J H, Gao X, et al. Factor analysis in the geochemical subdivisions: Taking 1∶50 000 debris geochemical survey in the Shibanjing area of Inner Mongolia as an example[J]. Bulletin of Geological Science and Technology, 2012, 31(2):27-34.
[37] 戎嘉树, 冯明月, 欧振武, 等. 花岗岩中晶质铀矿及其找矿意义[J]. 放射性地质, 1987, 25(5):263-269.
[37] Rong J S, Feng M Y, Ou Z W, et al. Granite mesomorphic uranium mine and its prospecting significance[J]. Uranium Geology, 1987, 25(5):263-269.
[38] 李莲. 因子分析在化探异常评价中的应用[J]. 物化探计算技术, 1986, 8(1):75-81.
[38] Li L. Application of factor analysis in evaluation of geochemical anomaly[J]. Computing Techniques for Geophysical and Geochemical Exploration, 1986, 8(1):75-81.
[39] 刘刚, 罗先熔, 郑超杰, 等. 地电化学集成技术在藏南姐纳各普金多金属矿区的找矿预测研究[J]. 矿物岩石地球化学通报, 2018, 37(5):894-902.
[39] Liu G, Luo X R, Zhen C J, et al. A study of geo-electrochemical integration technology for prospecting mineral resources in the Jienagepu Au polymetallic ore field, Shanan City, Tibet, China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2018, 37(5):894-902.
[1] 庞文静, 陈贝贝, 周涛, 黄柔睿, 周云云, 郭福生, 吴志春, 谢财富. 相山矿田与冷水坑矿田多金属成矿特征对比[J]. 物探与化探, 2021, 45(6): 1416-1424.
[2] 封志兵, 聂冰锋, 聂逢君, 江丽, 夏菲, 李满根, 严兆彬, 何剑锋, 程若丹. 地球物理方法在砂岩型铀矿勘查中的应用进展[J]. 物探与化探, 2021, 45(5): 1179-1188.
[3] 史琪, 赵延朋, 迟占东, 葛华, 康铁锁, 李发兴, 魏翔宇, 卢见昆, 杨人毅. 老挝川圹省约俄锡多金属矿区沟系土壤地球化学特征及成矿预测[J]. 物探与化探, 2021, 45(4): 824-834.
[4] 李英宾. 可控源音频大地电磁测量对腾格尔坳陷东北缘下白垩统赛汉组砂体的识别及其地质意义[J]. 物探与化探, 2021, 45(3): 616-623.
[5] 黄笑, 余弘龙, 江丽, 王殿学, 周文博, 马振宇, 张亮亮, 唐国龙. 钍归一化法在松辽盆地开鲁坳陷大林地区地面伽马能谱资料处理中的应用研究[J]. 物探与化探, 2021, 45(2): 316-322.
[6] 李敬敏, 米耀辉, 骆遥. NURE航空计划回顾与新时代航空γ能谱勘查启示[J]. 物探与化探, 2021, 45(2): 394-402.
[7] 杨玉勤, 张翔, 石连成, 邓德伟. 砂岩型铀矿航磁微弱异常提取方法[J]. 物探与化探, 2021, 45(1): 29-36.
[8] 李英宾, 谢明宏, 张占彬, 李毅, 魏滨, 张伟. 综合物探方法在上杭盆地古石背地区铀矿勘查中的应用[J]. 物探与化探, 2020, 44(6): 1283-1293.
[9] 梁建刚, 杨为民, 孙大鹏, 匡海阳. 二维地震勘探在大庆长垣南端砂岩型铀矿勘查中的应用[J]. 物探与化探, 2020, 44(6): 1322-1328.
[10] 卢辉雄, 张恩, 冯博, 程旭, 魏本赞, 王少帅, 范芳. 内蒙古巴升河地区航空伽马能谱异常特征及其铀成矿潜力分析[J]. 物探与化探, 2020, 44(1): 59-65.
[11] 王永飞, 李宝新, 曹云, 刘晨阳. 地球物理信息和控矿构造研究在乌克兰米丘林铀矿床中的应用[J]. 物探与化探, 2020, 44(1): 99-106.
[12] 李凯, 廖咏, 黄凝, 陈红生, 袁晶, 刘小龙. 新疆巴里坤望洋台一带1∶5万水系沉积物测量异常特征及找矿靶区优选[J]. 物探与化探, 2019, 43(6): 1236-1245.
[13] 吴燕清, 王世成, 丁园, 王青, 王文正. 氡气及CSAMT联合探测在内蒙古五十家子盆地铀矿勘查中的应用研究[J]. 物探与化探, 2019, 43(4): 726-733.
[14] 李凯, 万欢. 江西乐平涌山地区土壤异常特征及找矿前景[J]. 物探与化探, 2019, 43(3): 494-501.
[15] 吴曲波, 曹成寅, 李子伟. 准噶尔盆地五彩湾地区砂岩型铀矿地震勘探技术[J]. 物探与化探, 2018, 42(6): 1134-1143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com