Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (6): 1327-1337    DOI: 10.11720/wtyht.2022.1442
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
长江铀矿田花岗岩与铀成矿年代学研究进展
朱卫平1,2,3()
1.东华理工大学 地球科学学院,江西 南昌 330013
2.自然资源部 航空地球物理与遥感地质重点实验室,北京 100083
3.中国自然资源航空物探遥感中心,北京 100083
Chronological study advances of the granites and uranium mineralization in the Changjiang uranium ore-field
ZHU Wei-Ping1,2,3()
1. School of Earth Science,East China University of Technology,Nanchang 330013,China
2. Key Laboratory of Airborne Geophysics and Remote Sensing Geology,MNR,Beijing 100083,China
3. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources,Beijing 100083,China
全文: PDF(2570 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

长江铀矿田位于粤北诸广山岩体中南部,因产有棉花坑(302)、书楼丘(305)和长排等众多铀矿床而著名。空间上,这些铀矿床主要沿着长江岩体和油洞岩体接触部位分布,铀成矿与长江岩体和油洞岩体及其侵入其中的岩脉关系密切。前人对长江铀矿田岩体、岩脉与矿床等的形成年龄开展了大量测试工作,获得了丰富的年龄数据。本文总结了长江铀矿田花岗岩、铀成矿及岩脉年代学研究进展,结果表明:长江黑云母花岗岩岩体形成时间为166~157 Ma(加权平均年龄为160.9 Ma),为中—晚侏罗世;油洞二云母花岗岩岩体形成于245.6~219.6 Ma(加权平均年龄为232.1 Ma),为三叠纪。区内发育辉长闪长岩、角闪辉绿岩、细粒花岗质岩和煌斑岩等多种岩脉,岩脉活动至少可以划分为3期,即晚侏罗世基性脉岩(150~145.1 Ma)、早白垩世酸性脉岩(138.6~123.9 Ma)和早白垩世基性脉岩(110 Ma)。长江铀矿田的铀成矿作用从早白垩世已经开始,一直持续到古新世,年龄数据127~60 Ma,时间跨度较大,可划分为早白垩世成矿期(127~119 Ma)、晚白垩世成矿期(75~67 Ma)和古新世成矿期(61~54 Ma),其中以70~60 Ma(晚白垩世—古新世)年龄数据比较集中,可能是该区铀成矿高峰期。从时间来看,长江铀矿田成岩与铀成矿演化顺序为:油洞岩体→长江岩体→早期基性岩脉→细粒花岗质岩脉→早期铀成矿阶段→细粒黑云母花岗岩脉→晚期基性岩脉→第二期铀成矿阶段→晚期铀成矿阶段。长江铀矿田成岩与铀成矿作用可以划分为6期:三叠纪花岗岩浆作用(油洞岩体)、中—晚侏罗世花岗岩浆作用(长江岩体)、晚侏罗世基性脉岩作用(辉长闪长岩脉,150 Ma;角闪辉绿岩脉,145 Ma)、早白垩世脉岩与铀成矿作用(138.6~110 Ma)、晚白垩世铀成矿作用(75~67 Ma)、古新世铀成矿作用(61~54 Ma)。后续建议进一步加强除棉花坑铀矿床(302)、书楼丘铀矿床(305)和长排铀矿床以外的铀矿床成矿年代学、煌斑岩等其他岩脉年代学以及铀成矿机理研究,为该区下一步找矿提供科学依据。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱卫平
关键词 长江铀矿田成岩年龄成矿年龄成矿作用研究进展    
Abstract

The Changjiang uranium ore field is located in the south-central part of the Zhuguangshan pluton in northern Guangdong Province. This ore field holds many uranium deposits such as Mianhuakeng (302), Shulouqiu (305), and Changpai. These uranium deposits are mainly distributed along the contact parts between the Changjiang and Youdong plutons, and uranium mineralization is closely related to the Changjiang and Youdong plutons and their intrusive dykes. Previous researchers have conducted much testing on the formation ages of plutons, dykes, and deposits in the Changjiang ore field, obtaining abundant age data. This study summarized the chronological study advances of the granites, uranium mineralization, and dykes in the Changjiang uranium ore field. The results are as follows. The Changjiang biotite granite pluton was formed at 166~157 Ma (weighted average age: 160.9 Ma) during the Middle-Late Jurassic. The Youdong two-mica granite pluton was formed at 245.6~219.6 Ma (weighted average age: 232.1 Ma) during the Triassic. A variety of dykes such as gabbro diorites, hornblende diabases, fine-grained granitic rocks, and lamprophyres have developed in the study area. The dykes in the ore field can be divided into at least three categories according to their activity stages, namely Late Jurassic mafic dykes (150~145.1 Ma), Early Cretaceous acid dykes (138.6~123.9 Ma), and Early Cretaceous mafic dykes (110 Ma). The uranium mineralization of the Changjiang uranium ore field began during the Early Cretaceous and lasted until the Paleocene, showing a long time span ranging from 127 to 60 Ma. The uranium metallogenic periods include the Early Cretaceous metallogenic epoch (127~119 Ma), the Late Cretaceous metallogenic epoch (75~67 Ma), and the Paleocene metallogenic epoch (61~54 Ma). The age data are concentrated in the range of 70~60 Ma (Late Cretaceous-Paleocene), which might be the peak of uranium mineralization of the study area. The diagenesis and uranium mineralization of the Changjiang uranium ore field evolved in the order of Youdong pluton → Changjiang pluton → early mafic dykes → fine-grained granitic dykes → early uranium mineralization stage → fine-grained biotite granite dykes → late mafic dykes → second uranium mineralization stage → late uranium mineralization stage. There are six phases of diagenesis and uranium mineralization of the Changjiang uranium ore field, i.e., Triassic granitic magmatism (the Youdong pluton), Middle-Late Jurassic granitic magmatism (the Changjiang pluton), diagenesis of Late Jurassic mafic dykes (gabbro diorite dykes, 150 Ma; hornblende diabase dykes, 145 Ma), diagenesis of Early Cretaceous dykes and uranium mineralization (138.6~110 Ma), Late Cretaceous uranium mineralization (75~67 Ma), and Paleocene uranium mineralization (61~54 Ma). It is recommended that further studies should be conducted on the metallogenic chronology of uranium deposits, the geochronology of other dykes such as lamprophyres, and the uranium metallogenic mechanisms of deposits except for Mianhuakeng (302), Shulouqiu(305), and Changpai.

Key wordsChangjiang uranium ore field    diagenetic age    metallogenic age    mineralization    study advance
收稿日期: 2021-08-15      修回日期: 2022-05-04      出版日期: 2022-12-20
ZTFLH:  P632  
基金资助:中核联合基金项目(NRE2021-01);国家重点研发计划课题(2017YFC0602201);国家重点研发计划课题(2017YFC0602106);中国地质调查局项目(121201203000160006);中国地质调查局项目(DD20190551)
作者简介: 朱卫平(1980-),男,博士研究生,高级工程师,主要从事区域地质构造与矿产资源调查研究工作。Email:zwpagrs@126.com
引用本文:   
朱卫平. 长江铀矿田花岗岩与铀成矿年代学研究进展[J]. 物探与化探, 2022, 46(6): 1327-1337.
ZHU Wei-Ping. Chronological study advances of the granites and uranium mineralization in the Changjiang uranium ore-field. Geophysical and Geochemical Exploration, 2022, 46(6): 1327-1337.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.1442      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I6/1327
Fig.1  长江铀矿田地质简图[7](a)及区域构造位置(b)
1—第四系;2—燕山期中细粒二云母花岗岩;3—燕山期中粒斑状黑云母花岗岩;4—印支期粗粒二云母花岗岩;5—印支期粗粒黑云母花岗岩;6—加里东期花岗闪长岩;7—中生代火山岩;8—中生代花岗岩;9—辉绿岩;10—辉长闪长岩;11—构造带;12—地质界线与推测地质界线;13—铀矿床;14—地名;15—采样位置与编号
样号 采用位置 岩性 分析方法 年龄/Ma N MSWD 资料来源





Y1 302、301坑口 中粒黑云母花岗岩 锆石U-Pb法 163.6±12.5 - - 邓访陵(1987)[9]
Rb-Sr全岩等时线
年龄
170.7±3.9 - -
Y2
Y3
长江岩体 中粒黑云母花岗岩 LA-ICP-MS锆石
U-Pb
143±1.2 - 0.9 朱捌(2010)[10]
Y4 长江镇至邓屋镇 中粒黑云母花岗岩 SHRIMP锆石
U-Pb
160±2.0 9 1.8 朱捌(2010)[10]、邓平
等(2011)[11]
Y5 棉花坑钻孔 中粗粒黑云母花岗岩 LA-ICP-MS锆石
U-Pb
157.2±1.7 17 1.8 黄国龙等(2014)[12]
Y6 棉花坑铀钻孔 中粒黑云母花岗岩 LA-ICP-MS锆石
U-Pb
159.5±1.2 18 1.15 黄国龙等(2014)[12]
Y7 棉花坑钻孔 细粒不等粒黑云母
花岗岩
LA-ICP-MS锆石
U-Pb
161.6±2.1 15 2.5 黄国龙等(2014)[12]
Y8 岩体钻孔岩心
ZK211-3
花岗岩 LA-ICP-MS锆石
U-Pb
157.6±1.8 15 0.084 田泽瑾(2014)[13]
Y9 ZK304-3 花岗岩 LA-ICP-MS锆石
U-Pb
158.8±1.9 14 0.27 田泽瑾(2014)[13]
Y10 302矿床9号带钻孔
和坑道
中粒黑云母花岗岩 LA-ICP-MS锆石
U-Pb
164±2.0 13 6.3 傅丽雯(2015)[14]
Y11
Y12
长江岩体 中粗粒黑云母花岗岩 电子探针 157±3.2 14 0.069 张龙(2016)[15]、张龙
等(2016)[16]
Y13 油洞岩体 长江岩体花岗岩 电子探针 160±3.3 22 0.32 张龙(2016)[15]
Y14 棉花坑KZK11-3
海拔141.15~
-168.19 m
含晶质铀矿花岗岩
(长江岩体)
电子探针 165±2.5 28 0.25 张龙(2016)[15]
Y15 具体位置不清 中粒黑云母花岗岩 LA-ICP-MS锆石
U-Pb
166±3.0 19 3.1 孙立强(2018)[17]
Y16 长江镇南侧锦原矿业
公司东侧山坡上
E113.939898°,
N25.302975°
中粒黑云母花岗岩 LA-ICP-MS锆石
U-Pb
161±1.0 17 0.24 钟福军(2018)[18]
Y17 中粒黑云母花岗岩 SHRIMP锆石
U-Pb
162.9±1.1 16 0.38 钟福军(2018)[18]
Y18 书楼丘凌溪村露头+
ZK26-1
海拔320~-150 m
辉长闪长岩捕获了中
粒黑云母花岗岩
LA-ICP-MS锆石
U-Pb
165±2.0 6 0.96 钟福军等(2019)[7]
Y19 长江岩体 中粗粒黑云母花岗岩 LA-ICP-MS独居石 156.8±1.7 14 0.76 陈妍(2021)[19]





Y20 油洞岩体 二云母花岗岩 LA-ICP-MS锆石
U-Pb
233.9±6.3 - 7.7 张敏(2006)[20]
Y21 仁化县至长江镇
E113°56'59.2″,
N25°18'41.2″
中粒小斑状二云母
花岗岩
SHRIMP锆石
U-Pb
232±4.0 12 3.2 朱捌(2010)[10]、黄国
龙等(2012)[21]
Y22 油洞岩体 花岗岩 电子探针 225±5.4 17 0.51 张龙(2016)[15]
Y11 油洞岩体 花岗岩 LA-ICP-MS锆石
U-Pb
226.4±3.5 15 0.83 Zhang L,et al.(2018)[4]
Y23 长江镇东南下学塘垇
村新修公路
E113.972855°,
N25.298562°
中粗粒小斑状二云母
花岗岩
LA-ICP-MS锆石
U-Pb
244±1.6 18 0.091 钟福军(2018)[18]
Y24 油洞岩体 中粗粒二云母花岗岩 LA-ICP-MS独居石
定年
228±1.5 23 0.83 陈妍等(2021)[19]
样号 采用位置 岩性 分析方法 年龄/Ma N MSWD 资料来源



Y25 油洞断裂带 角闪辉绿岩 全岩Ar-Ar定年 110.6±2.0 - - 曹豪杰(2013)[22]
Y26 长江矿田 角闪辉绿岩 角闪石Ar-Ar 145.1±1.5 - - Zhang L,et al.
(2018)[4]
Y18 书楼丘凌溪村露头+
ZK26-1海拔
320~-150 m
辉长闪长岩 LA-ICP-MS锆石
U-Pb
150±1.0 17 0.18 钟福军等(2019)[7]
Y27 棉花坑9号矿带南
段钻孔深部
细粒花岗质脉岩 LA-ICP-MS锆石
U-Pb
138.6±1.3 16 0.81 徐文雄等(2014)[23]
Y28 棉花坑
ZK15-9
海拔约-105m
细粒黑云母花岗岩 LA-ICP-MS锆石
U-Pb
123.9±1.3 15 1.3 周航兵等(2018)[24]





Y29 书楼丘
ZK16-4
海拔-72.36 m
微晶石英脉型铀矿 LA-ICP-MS原位锆
石 U-Pb
71.4±1.3 16 2.2 钟福军等(2019)[25]
Y30 书楼丘
ZK26-1
海拔-75.89 m
碎裂岩型铀矿 LA-ICP-MS原位锆
石U-Pb
74.4±1.7 9 1.5 钟福军等(2019)[25]
Y31 书楼丘
ZK87-1
海拔112.30 m
碎裂煌斑岩型沥青
铀矿
LA-ICP-MS锆石
U-Pb
71.3±1.1 15 1.6 郑国栋等(2021)[26]





Y32 棉花坑9号矿脉 角砾状沥青铀矿
(早期矿化年龄)
U-Pb 溶液法 127 - - 张国全(2008)[27]
Y33 棉花坑9号矿脉 “红化”沥青铀矿
(主成矿年龄)
U-Pb 溶液法 54 - - 张国全(2008)[27]
Y34 棉花坑ZK37-3
海拔653 m
碱交代岩钾长石 K-Ar 81.96±1.76 - - 张爱等(2009)[28]
06148等 棉花坑 沥青铀矿 235U-204Pb等时线 68.7±3.0 8 665 黄国龙等(2010)[29]
Sm-Nd等时线 70±11 7 0.50 黄国龙等(2010)[29]
Y11
Y12
长江岩体 沥青铀矿 电子探针 75±2.1 5 1.64 张龙(2016)[15]、张龙
等(2016)[16]
Y11
Y12
长江岩体 沥青铀矿 电子探针 104±1.6 20 1.60 张龙(2016)[15]、张龙
等(2016)[16]
Y14 棉花坑Ⅳ-1带 沥青铀矿 电子探针 67±4.1 4 5.2 张龙(2016)[15]
Y14 棉花坑Ⅳ-1带 沥青铀矿 电子探针 94±1.1 14 0.82 张龙(2016)[15]
Y14 棉花坑Ⅳ-1带 沥青铀矿 电子探针 103±1.8 18 1.9 张龙(2016)[15]
Y14 棉花坑Ⅳ-1带 沥青铀矿 电子探针 119±3.5 4 0.37 张龙(2016)[15]
Y14 棉花坑Ⅳ-2带 沥青铀矿 电子探针 67±2.1 12 8.3 张龙(2016)[15]
Y36 棉花矿坑海拔150 m 石英脉 LA-ICP-MS原位锆
石U-Pb
90±43 12 1.4 Chrstophe B,et al.
(2018)[30]
Y37 棉花矿坑海拔150 m 石英脉 LA-ICP-MS原位锆
石U-Pb
93±15 6 2.5 Chrstophe B,et al.
(2018)[30]
Y38 棉花坑
KZK39-3
海拔-268.95 m
铀矿石 LA-ICP-MS原位
锆石U-Pb
59.5±1.0 10 0.39 Zhong F J, et al.
(2018)[31]
Y39 棉花坑 铀矿石 LA-ICP-MS原位锆
石U-Pb
60.0±0.5 21 1.13 Zhong F J, et al.
(2018)[31]
Y40 棉花坑
坑道采
场海拔-150 m
碎裂岩型铀矿 LA-ICP-MS原位锆
石 U-Pb
60.8±0.6 30 0.31 钟福军等(2019)[25]
Y41 棉花坑
ZK26-2
海拔115.89 m
微晶石英脉型铀矿 LA-ICP-MS原位锆
石U-Pb
66.8±1.6 16 3.8 钟福军等(2019)[25]
样号 采用位置 岩性 分析方法 年龄/Ma N MSWD 资料来源




Y42 长排ZK1-1
海拔138.56 m
萤石碎裂岩型铀矿 LA-ICP-MS原位
锆石U-Pb
62.4±2.5 8 2.4 钟福军等(2019)[25]
Y43 长排ZK205-3
海拔67.18 m
微晶石英脉型铀矿 LA-ICP-MS原位
锆石U-Pb
70.2±0.5 22 2.0 钟福军等(2019)[25]
Y44 扶溪岩体 花岗闪长岩 LA-ICP-MS锆石
U-Pb
440.7±3.3 18 2.4 于玉帅等(2017)[32]
Y45 扶溪岩体 花岗岩 LA-ICP-MS锆石
U-Pb
426.7±5.4
(402.2~451.6)
20 1.4 Zhang L, et al.
(2018)[4]
Table 1  长江铀矿田花岗岩及铀成矿年龄数据统计
Fig.2  长江岩体年龄概率分布
Fig.3  油洞岩体年龄概率分布
Fig.4  长江铀矿田脉岩年龄概率分布
Fig.5  棉花坑铀矿床成矿年龄概率分布
Fig.6  长江铀矿田岩体形成与铀成矿演化阶段示意
[1] Wang K X, Sun L Q, Sun T, et al. Provenance, weathering conditions, and tectonic evolution history of the Cambrian meta-sediments in the Zhuguangshan area, Cathaysia Block[J]. Precambrian Research, 2018, 311:195-210.
[2] 张伟盟, 严杰, 钟福军, 等. 粤北石角围花岗岩型铀矿床沥青铀矿LA-ICP-MS原位U-Pb定年研究[J]. 岩矿测试, 2019, 38(4):449-460.
[2] Zhang W M, Yan J, Zhong F J, et al. In situ LA-ICP-MS U-Pb dating of uraninite from the Shijiaowei granite-type uranium deposit,northern Guangdong Province[J]. Rock and Mineral Analysis, 2019, 38(4): 449-460.
[3] Zhang L, Chen Z Y, Wang F Y, et al. Apatite geochemistry as an indicator of petrogenesis and uranium fertility of granites: A case study from the Zhuguangshan batholith, South China[J]. Ore Geology Reviews, 2021, 128:1-15.
[4] Zhang L, Chen Z Y, Li X F, et al. Zircon U-Pb geochronology and geochemistry of granites in the Zhuguangshan complex,South China:Implications for uranium mineralization[J]. Lithos, 2018,308-309:19-33.
[5] 李杰, 黄宏业, 刘子杰, 等. 诸广中段鹿井地区辉绿岩40Ar-39Ar年代学[J]. 吉林大学学报:地球科学版, 2021, 51(2):442-454.
[5] Li J, Huang H Y, Liu Z J, et al. 40Ar-39Ar geochronology of diabase in Lujing area of middle Zhuguangshan[J]. Journal of Jilin University:Earth Science Edition, 2021, 51(2):442-454.
[6] 罗强, 刘斌, 郭新文, 等. 诸广南部书楼丘地区煌斑岩地球化学特征与铀成矿关系[J]. 地质学刊, 2020, 44(1/2):63-70.
[6] Luo Q, Liu B, Guo X W, et al. Geochemical characteristics and uranium mineralization of lamprophyre in the Shulouqiu area,southern Zhuguang[J]. Journal of Geology, 2020, 44(1/2):63-70.
[7] 钟福军, 潘家永, 巫建华, 等. 粤北长江铀矿田辉长闪长岩的岩石成因及其与铀成矿的关系[J]. 地球科学, 2019, 44(9):3042-3059.
[7] Zhong F J, Pan J Y, Wu J H, et al. Petrogenesis and its relationship with uranium mineralization of gabbro-diorite in Changjiang uranium ore-field,northern Guangdong Province,China[J]. Earth Science, 2019, 44(9):3042-3059.
[8] 何德宝, 范洪海, 汪昱. 下庄铀矿田成矿模式[J]. 铀矿地质, 2016, 32(3):152-158.
[8] He D B, Fan H H, Wang Y. Metallogenic model in Xianzhuang uranium ore field[J]. Uranium Geology, 2016, 32(3):152-158.
[9] 邓访陵. 诸广山花岗岩复式岩基南部的同位素地质年代学[J]. 地球化学, 1987(2): 141-152.
[9] Deng F L. Isotopic geochronology of the souther Zhuguangshan granite batholith[J]. Geochimica, 1987(2):141-152.
[10] 朱捌. 地幔流体与铀成矿作用研究——以诸广南部铀矿田为例[D]. 成都: 成都理工大学, 2010.
[10] Zhu B. The study of mantle liquid and uranium metallogenesis—Take uranium ore field of south zhuguang mountain as an example[D]. Chengdu: Chendu University of Technology, 2010.
[11] 邓平, 任纪舜, 凌洪飞, 等. 诸广山南体燕山期花岗岩的锆石SHRIMP U-Pb年龄及其构造意义[J]. 地质论评, 2011, 57(6):881-888.
[11] Deng P, Ren J S, Ling H F, et al. Yanshanian granite batholiths of southern Zhuguang mountain:SHRIMP zircon U-Pb dating and Tectonic implications[J]. Geological Review, 2011, 57(6):881-888.
[12] 黄国龙, 刘鑫扬, 孙立强, 等. 粤北长江岩体的锆石U-Pb定年、地球化学特征及其成因研究[J]. 地质学报, 2014, 88(5):837-849.
[12] Huang G L, Liu X Y, Sun L Q, et al. Zircon U-Pb dating,geochemical characteristic and genesis of the Changjiang granite in northern Guangdong[J]. ACTA Geologica Sinia, 2014, 85(5):837-849.
[13] 田泽瑾. 诸广山产铀与不产铀花岗岩的年代学、地球化学及矿物学特征对比研究[D]. 北京: 中国地质大学(北京), 2014.
[13] Tian Z J. Uranium-bearing and barren granites from the Zhuguang mountain: Geochronology,element geochemistry,mineralogy[D]. Beijing: China University of Geosciences (Beijing), 2014.
[14] 傅丽雯. 粤北302铀矿床围岩蚀变分带、成矿流体与成矿物质来源研究[D]. 南京: 南京大学, 2015.
[14] Fu L W. Study on wall rock alteration zoning,the source of ore-forming fluid and ore-forming latenal of the 302 uranium deposit in northern Guangdong Province[D]. Nanjing: Nanjing University, 2015.
[15] 张龙. 粤北诸广山岩体等铀矿物研究[D]. 北京: 中国地质大学(北京), 2016.
[15] Zhang L. Study on uranium minerals of Zhuguangshan complex pluton,northern Guangdong[D]. Beijing: China University of Geosciences (Beijing), 2016.
[16] 张龙, 陈振宇, 田泽瑾, 等. 电子探针测年方法应用于粤北长江岩体的铀矿物年龄研究[J]. 岩矿测试, 2016, 35(1):98-107.
[16] Zhong L, Chen Z Y, Tian Z J, et al. The application of electron microprobe dating method on uranium minerals in Changjiang granite,northern Guangdong[J]. Rock and Mineral Analysis, 2016, 35(1):98-107.
[17] 孙立强. 南岭诸广山地区中生代花岗岩成因及其对铀成石广作用的启示[D]. 南京: 南京大学, 2018.
[17] Sun L Q. Petrogenesis of the Mesozoic granites in the Zhuguangshan area in the Nanling Region and their implications for the uranium mineralization[D]. Nanjing: Nanjing University, 2018.
[18] 钟福军. 华南花岗岩型铀矿成岩成矿作用研究——以粤北长江铀矿田为例[D]. 南昌: 东华理工大学, 2018.
[18] Zhong F J. Petrogensis and mineralization of granite type uranium deposits in South China:A case study of the Changjiang uranium ore field in northern Guangdong Province[D]. Nanchang: East China University of Technology, 2018.
[19] 陈妍, 潘家永, 钟福军, 等. 粤北长江铀矿田花岗岩独居石U-Pb同位素定年及其地质意义[J]. 岩矿测试, 2022, 41(1):1-13.
[19] Chen Y, Pan J Y, Zhong F J, et al. U-Pb isotopic dating of granite monazite and its geological significance from the Changjiang uranium ore field,northern Guangdong Province[J]. Rock and Mineral Analysis, 2022, 41(1):1-13.
[20] 张敏. 粤北产铀岩体的年代学和地球化学及铀成矿机制研究[D]. 南京: 南京大学, 2006.
[20] Zhang M. Geochronology, geochemistry and uranium metallogenic mechanism of uranium in northern Guangdong[D]. Nanjing: Nanjing University, 2006.
[21] 黄国龙, 曹豪杰, 凌洪飞, 等. 粤北油洞岩体SHRIMP锆石U-Pb年龄、地球化学特征及其成因研究[J]. 地质学报, 2012, 86(4):577-586.
[21] Huang G L, Cao H J, Ling H F, et al. Zircon SHRIMP U-Pb age,geochemistry and genesis of the Youdong granite in northern Guangdong[J]. Acta Geologica Sinia, 2012, 86(4):577-586.
[22] 曹豪杰, 黄国龙, 许丽丽, 等. 诸广花岗岩体南部油洞断裂带辉绿岩脉的Ar-Ar年龄及其地球化学特征[J]. 地质学报, 2013, 87(7):957-966.
[22] Cao H J, Huang G L, Xu L L, et al. The Ar-Ar age and geochemical characteristics of diabase dykes of the Youdong fault zone in south of Zhuguang granites pluton[J]. Acta Geologica Sinia, 2013, 87(7):957-966.
[23] 徐文雄, 谭忠银, 罗春梧, 等. 棉花坑铀矿床花岗质脉岩地球化学特征及其与铀成矿的关系[J]. 铀矿地质, 2014, 30(6):345-355.
[23] Xu W X, Tan Z Y, Luo C W, et al. Geochemical characteristic and ore-forming geological significance of fine crystalline in Mianhuakeng uranium deposit,northern Guangdong[J]. Uranium Geology, 2014, 30(6):345-355.
[24] 周航兵, 潘家永, 钟福军, 等. 北长江铀矿田细粒黑云母花岗岩的成因及其与铀成矿关系[J]. 矿物岩石, 2018, 38(1):10-19.
[24] Zhou H B, Pan J Y, Zhong F J, et al. Genesis of fine grained biotite granite in the Changjiang uranium ore field,northern Guangdong of China,and its relation with uranium mineralization[J]. Journal of Mineralogis and Petrology, 2018, 38(1):10-19.
[25] 钟福军, 严杰, 夏菲, 等. 粤北长江花岗岩型铀矿田沥青铀矿原位U-Pb年代学研究及其地质意义[J]. 岩石学报, 2019, 35(9):2727-2744.
[25] Zhong F J, Yan J, Xia F, et al. In-situ U-Pb isotope geochronology of uraninite for Changjiang granite-type uranium ore field in northern Guangdong,China: Implications for uranium mineralization[J]. Acta Petrologica Sinica, 2019b, 35(9):2727-2744.
[26] 郑国栋, 罗强, 刘文泉, 等. 粤北书楼丘铀矿床沥青铀矿原位 U-Pb 年龄和元素特征及其地质意义[J]. 地球科学, 2021, 46(6):2172-2186.
[26] Zheng G D, Luo Q, Liu W Q, et al. In-situ U-Pb age and elemental characteristics of the pitchblende in the Shulouqiu uranium deposit and its geological significance[J]. Earth Science, 2021, 46(6):2172-2186.
[27] 张国全. 华南热液铀矿床地球化学研究——以302 铀矿床为例[D]. 北京: 中国科学院大学, 2008.
[27] Zhang G Q. Geochemistry of hydrothermal uranium deposits in South China:A case study of the No.302 uranium deposit[D]. Beijing: Chinese Academy of Sciences and of Institute of Geochemisty, 2008.
[28] 张爱, 刘成东, 余志灵, 等. 诸广南部铀矿区碱交代岩特征及同位素年代学研究[J]. 东华理工大学学报:自然科学版, 2009, 32(3):209-212.
[28] Zhang A, Liu C D, Yu Z L, et al. The features and geochronology of alkali metasomatic rock in southern Zhuguang uranium mineralization area[J]. Journal of East China Universtiy of Technology, 2009, 32(3):209-212.
[29] 黄国龙, 尹征平, 凌洪飞, 等. 粤北地区302矿床沥青铀矿的形成时代[J]. 矿床地质, 2010, 29(2):352-360.
[29] Huang G L, Yin Z P, Ling H F, et al. Foration age,geochemical characteris ticas and genesis of pitchblende from No.302 uranium deposit in northern Guangdong[J]. Mineral Deposits, 2010, 29(2):352-360.
[30] Christophe B, Liu X D, Julien M, et al. The genesis of granite-related hydrothermal uranium deposits in the Xiazhuang[J]. Ore Geology Reviews, 2018(92):588-612.
[31] Zhong F J, Pan J Y, Qi J M, et al. New in-situ LA-ICP-MS U-Pb ages of uraninite from the Mianhuakeng uranium deposit,northern Guangdong Province,China: Constraint on the metallogenic mechanism[J]. Acta Geologica Sinica:English Edition, 2018, 92(2):852-854.
[32] 于玉帅, 戴平云, 郭福生, 等. 粤北扶溪岩体成因及时代:来自矿物化学、岩石地球化学及LA-ICP-MS锆石U-Pb年龄证据[J]. 地质科技情报, 2017, 36(6):71-82.
[32] Yu Y S, Dai P Y, Guo F S, et al. Genesis and age of Fuxi granodiorite Southern Zhuguang mountain,northern Guangdong Province:Constrain from mineralogy chemistry,geochemistry and LA-ICP-MS Zircon U-Pb dation[J]. Geological Science and Tecnology Information, 2017, 36(6):71-82.
[33] 骆金诚, 齐有强, 王连训. 粤北下庄铀矿田基性岩脉Ar-Ar定年及其与铀成矿关系新认识[J]. 岩石学报, 2019, 35(9):2660-2678.
[33] Luo J C, Qi Y Q, Wang L X, et al. Ar-Ar dating of mafic dykes from the Xiazhuang uranium ore field in northern Guangdong,South China: A reevaluation of the role of mafic dyke in uranium mineralization[J]. Acta Petrologica Sinica, 2019, 35(9):2660-2678.
[34] 岑涛, 李武显, 陶继华, 等. 赣南版石—蔡坊火山岩年代学、地球化学和锆石Hf同位素特征及其地质意义[J]. 大地构造与成矿学, 2017, 41(5):933-949.
[34] Ceng T, Li X W, Tao J H, et al. Geochronology, geochemistry and zircon Hf isotope for Banshi and Caifang volcanic rocks from Southern Jiangxi Province and their geological implications[J]. Geotectonica et Metallogenia, 2017, 41(5):933-949.
[35] 胡瑞忠, 毕献武, 彭建堂, 等. 华南地区中生代以来岩石圈伸展及其与铀成矿关系研究的若干问题[J]. 矿床地质, 2007, 26(2):139-152.
[35] Hu R Z, Bi X W, Peng J T, et al. Some problems concerning relationship between Mesozoic-Cenozoic lithospheric extension and uranium metallo-genesis in South China[J]. Mineral Deposits, 2007, 26(2):139-152.
[36] 王家松, 彭丽娜, 张楠. LA-ICP-MS锆石U-Pb同位素定年存在的基体效应研究进展[J]. 理化检验:化学分册, 2017, 53(6):736-744.
[36] Wang J S, Peng L N, Zhang N. Research progress on matrix effects in zircon U-Pb isotopic dating by LA-ICP-MS[J]. Physical Testing and Chemical Analysis Part B:Chemical analysis, 2017, 53(6):736-744.
[37] Zhao K D, Jiang S Y, Ling H F, et al. Reliability of LA-ICP-MS U-Pb dating of zircons with high U concentrations: A case study from the U-bearing Douzhashan Granite in South China[J]. Chemical Geology, 2014, 389:110-121.
[38] Zamyatin D A, Shchapova Y V, Votyakov S L, et al. Alteration and chemical U-Th-total Pb dating of heterogeneous high-uranium zircon from a pegmatite from the Aduiskii massif,middle Urals,Russia[J]. Miner Petrol, 2017, 111:475-497.
[1] 陈子龙, 王海燕, 郭华, 王光文, 赵玉莲. 地震全波形反演研究进展与应用现状综述[J]. 物探与化探, 2023, 47(3): 628-637.
[2] 喻翔, 汪硕, 胡英才, 段书新. 二连盆地北部玄武岩覆盖区电性结构与铀成矿环境研究[J]. 物探与化探, 2022, 46(5): 1157-1166.
[3] 邹雨, 王国建, 杨帆, 陈媛. 含油气盆地甲烷微渗漏及其油气勘探意义研究进展[J]. 物探与化探, 2022, 46(1): 1-11.
[4] 刘纪峰, 白德胜, 张凯涛, 王金路, 卫建征, 苏阳艳. 河南方城刘营萤石矿稀土元素特征及成矿年龄[J]. 物探与化探, 2021, 45(3): 639-644.
[5] 杨庆坤, 张小亮, 华琛, 于玉帅, 周万蓬. 赣中大王山石英脉型钨钼多金属矿床成岩成矿年代学及其地质意义[J]. 物探与化探, 2019, 43(3): 558-567.
[6] 郭友钊, 郭心玮, 王兴春, 李磊, 吴树宽. 东昆仑夏日哈木铜镍硫化物矿床成矿作用的磁参数Q值试研究[J]. 物探与化探, 2015, 39(6): 1278-1283.
[7] 李杰, 施泽明, 高琴, 倪师军, 张成江, 李世勇. 我国城市地球化学热点领域研究进展及展望[J]. 物探与化探, 2012, 36(3): 429-434.
[8] 郑洪伟, 李廷栋, 高锐. 青藏高原地震层析成像的研究进展[J]. 物探与化探, 2011, 35(2): 160-164.
[9] 万守全. 河南省桐柏县银洞坡金矿成矿作用[J]. 物探与化探, 2006, 30(5): 387-392.
[10] 郭友钊, 李磊, 张亚东, 董杰. 冀北地区中生代岩浆岩密度分布特征及其幔枝构造的研究[J]. 物探与化探, 2001, 25(5): 379-382.
[11] 饶家荣, 骆检兰, 易志军. 锡矿山锑矿田幔—壳构造成矿模型及找矿预测[J]. 物探与化探, 1999, 23(4): 241-249.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com