Please wait a minute...
E-mail Alert Rss
 
物探与化探  2021, Vol. 45 Issue (2): 466-472    DOI: 10.11720/wtyht.2021.2472
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于模拟退火算法的阵列声波测井组分波慢度提取
周昊仪1,2(), 莫修文2(), 王丽丽3, 许宝寅3
1.中国地质调查局 广州海洋地质调查局 ,广东 广州 510075
2.吉林大学 地球探测科学与技术学院 ,吉林 长春 130026
3.中国石油天然气股份有限公司 吉林油田分公司 地球物理研究院 ,吉林 松原 138000
The research of the slowness extraction method of component waves in array acoustic logging data based on simulated annealing algorithm
ZHOU Hao-Yi1,2(), MO Xiu-Wen2(), WANG Li-Li3, XU Bao-Yin3
1. Guangzhou Marine Geological Survey,CGS,Guangzhou 510075,China
2. College of GeoExploration Science and Technology,Jilin University,Changchun 130026,China
3. Institute of Geophysics of Jilin Oil and Gas Co.,Ltd.,China Petroleum and Natural Gas Co.,Ltd.,Songyuan 138000,China
全文: PDF(2682 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

为了提高阵列声波测井组分波慢度提取的精度,基于模拟退火算法以及慢度—时间相关(STC)法的原理,提出了模拟退火算法与慢度—时间相关法结合的阵列声波测井资料处理新方法。该算法核心是将慢度—时间相关法的相关系数经过变换作为模拟退火算法的能量函数,利用模拟退火的全局寻优能力求取组分波慢度。对于纵波,在退火前使用长短时窗能量比法进行波至点的求取可以将二维搜索简化为一维;对于其他组分波,分别使用该算法进行慢度—波至点二维搜索以提取慢度。实例表明,与常规的纵波速度测井对比,该算法提取的纵波精度比传统STC方法处理结果高9.94%;横波结果与传统STC方法的差别为0.29%;斯通利波结果与传统STC方法的差别为0.42%。算法在一定程度上提高了解释精度,在实际应用中有较好效果。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周昊仪
莫修文
王丽丽
许宝寅
关键词 阵列声波测井慢度提取模拟退火算法慢度—时间相关法    
Abstract

To enhance the precision of slowness extraction of component waves in array acoustic logging data,the authors,based on simulated annealing algorithm and the theory of slowness-time coherence (STC) method,put forward a new method to process array acoustic data by combining simulated annealing algorithm with slowness-time coherence method.The core of the algorithm is to transform the correlation coefficient of slowness-time coherence method into the energy function of simulated annealing algorithm so that the global optimization capability of simulated annealing algorithm can be utilized to extract the slownesses of component waves.For compressional wave,the energy ratio of short window versus long window method can be applied to the computation of arrival before annealing,so that the two-dimensional search can be simplified to one-dimensional;for other component waves,the algorithm is used respectively to extract the slownesses by two-dimensional search of slowness and arrival.Examples show that,compared with conventional compressional wave logging,the precision of the processed results of compressional wave is 9.94% better than that of conventional STC;the results of shear wave have a difference of 0.29% to those of conventional STC while the difference of Stoneley wave is 0.42%.The algorithm can enhance the precision of slowness extraction of component waves to a certain extent,performing well in application.

Key wordsarray acoustic logging    extraction of slowness    simulated annealing algorithm    slowness-time coherence method
收稿日期: 2019-10-09      修回日期: 2020-11-12      出版日期: 2021-04-20
ZTFLH:  P631  
基金资助:科技部十三五重点研发计划项目课题“水合物富集区精细勘探技术应用示范”(SQ2017YFSF020181-01);松辽盆地南部致密油气成藏及动用技术研究(2017B-4905)
通讯作者: 莫修文
作者简介: 周昊仪(1994-),男,硕士研究生,研究方向为地球物理测井数据处理与解释。Email: haoyi17@mails.jlu.edu.cn
引用本文:   
周昊仪, 莫修文, 王丽丽, 许宝寅. 基于模拟退火算法的阵列声波测井组分波慢度提取[J]. 物探与化探, 2021, 45(2): 466-472.
ZHOU Hao-Yi, MO Xiu-Wen, WANG Li-Li, XU Bao-Yin. The research of the slowness extraction method of component waves in array acoustic logging data based on simulated annealing algorithm. Geophysical and Geochemical Exploration, 2021, 45(2): 466-472.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2021.2472      或      https://www.wutanyuhuatan.com/CN/Y2021/V45/I2/466
名称 降温公式
经典降温方式 T=T0/lg(1+k)
快速方式 T=T0(1+k)
指数下降型 T=T0exp(-ck1/N)
双曲下降型 T=T0(0.99)k
Table 1  冷却进度
Fig.1  滤波前(a)后(b)波形对比
Fig.2  算法流程
Fig.3  L井纵波处理结果
Fig.4  T井各组分波处理结果汇总
[1] 孙杰文, 尹帅, 崔明月, 等. 基于阵列声波测井评价致密砂岩储层地应力[J]. 测井技术, 2018,42(2):181-185,192.
[1] Sun J W, Yin S, Cui M Y, et al. Evaluation of current geostress in tight sandstone reservoirs based on array acoustic logging[J]. Well Logging Technology, 2018,42(2):181-185,192.
[2] 许松, 唐晓明, 苏远大, 等. 斯通利波和弯曲波联合反演地层VTI各向异性的阵列声波处理方法[J]. 地球物理学报, 2018,61(12):5105-5114.
[2] Xu S, Tang X M, Su Y D, et al. Determining formation shear wave transverse isotrophy jointly from borehole Stoneley-and flexural-wave data[J]. Chinese Journal of Geophysics, 2018,61(12):5105-5114.
[3] Kimball C V, Marzetta T L. Semblance processing of borehole array data[J]. Geophysics, 1984,49(3):274-281.
[4] Ingram J D, Morris C F, MacKnight E E, et al. Direct phase determination of S-wave velocities from acoustic logs[J]. Geophysics, 1985,50(11):1746-1755.
[5] Hsu K, Baggeroer A B. Application of the maximum-likelihood method (MLM) for sonic velocity logging[J]. Geophysics, 1986,51(3):780-787.
[6] 乔文孝. 用插值法提高声波时差的计算精度[J]. 测井技术, 1997,21(2):125-128.
[6] Qiao W X. Enhance the accuracy when calculating the slowness of acoustic waves by using interpolation[J]. Well Logging Technology, 1997,21(2):125-128.
[7] 章成广, 肖柏勋, 江万哲. 频谱法时差提取在声波全波形处理中的应用[J]. 工程地球物理学报, 2004,1(1):60-63.
[7] Zhang C G, Xiao B X, Jiang W Z. Application of slowness gained by using spectral method in acoustic full waveform processing[J]. Chinese Journal of Engineering Geophysics, 2004,1(1):60-63.
[8] 陈强, 张超谟. 长短时窗能量比法提取声波全波列测井纵横波信息[J]. 石油天然气学报:江汉石油学院学报, 2006,28(3):72-75.
[8] Chen Q, Zhang C M. The extraction of information of compressional waves and shear waves using energy ratio of short time window versus long time window method in full waveform acoustic logging[J]. Journal of Oil and Gas Technology, 2006,28(3):72-75.
[9] 宋延杰, 何英伟, 石颖, 等. 慢度—时间相关法与遗传算法结合提取阵列声波时差[J]. 测井技术, 2006,30(2):122-125.
[9] Song Y J, He Y W, Shi Y, et al. Estimating slowness of array sonic data with slowness time coherence and genetic algorithm[J]. Well Logging Technology, 2006,30(2):122-125.
[10] 康晓泉, 苏远大, 程晓东, 等. 阵列声波测井时差拾取的慢度距离相关-SDC法[J]. 地球物理学进展, 2012,27(6):2534-2540.
[10] Kang X Q, Su Y D, Cheng X D, et al. The application of slowness distance coherence_SDC on array aocustic logging slowness pickup[J]. Progress in Geophysics, 2012,27(6):2534-2540.
[11] 王雷, 周继宏. 多分辨率地层纵横波时差提取[J]. 工程地球物理学报, 2017,14(6):686-693.
[11] Wang L, Zhou J H. Time-difference extraction of P-wave and S-wave in multiple resolution formation[J]. Chinese Journal of Engineering Geophysics, 2017,14(6):686-693.
[12] Metropolis N, Rosenbluth A W, Rosenbluth M N, et al. Equation of state calculations by fast computing machines[J]. The Journal of Chemical Physics, 1953,56(21):1087-1092.
[13] Kirkpatrick S, Jr Gelatt C D, Vecchi M P. Optimization by simulated annealing[J]. Science, 1983,220(11):650-671.
[14] 陶果, 杨韡, 杨建利. 用模拟退火方法计算偶极横波时差[J]. 石油大学学报, 2001,25(1):96-98.
[14] Tao G, Yang W, Yang J L. Calculation of dipole shear wave time difference by simulated annealing method[J]. Journal of the University of Petroleum, 2001,25(1):96-98.
[15] 王飞. 交叉偶极声波测井资料处理及在致密气层评价中的应用研究[D]. 长春:吉林大学, 2013: 36-37.
[15] Wang F. Research on the application and evaluation of cross-dipole acoustic logging to interpretation of tight reservoirs[D]. Changchun:Jilin University, 2013: 36-37.
[16] 赵瑞平. 混沌—模拟退火法在测井解释中的应用[D]. 西安:长安大学, 2013: 9-18.
[16] Zhao R P. Chaos-simulated annealing method in the application of well logging interpretation [D].Xi'an:Chang'an University, 2013: 9-18.
[17] 李忠新, 杨鹏, 夏晞冉. 快速模拟退火算法在核磁差谱分析中的应用[J]. 中国石油和化工标准与测量, 2014,34(9):248-249.
[17] Li Z X, Yang P, Xia X R. The application of fast simulated annealing algorithm in the analysis of nuclear magnetic difference spectrum[J]. Standards and Measurement of China Petroleum and Chemical Industry, 2014,34(9):248-249.
[18] 姜明, 柯式镇, 吕世瑶, 等. 基于非均匀采样的模拟退火随钻电磁波电阻率测井检波系统研究[J] 中国石油大学学报:自然科学版, 2017,41(1):78-84.
[18] Jiang M, Ke S Z, Lyu S Y, et al. SA demodulation system based on nonuniform sampling for LWD electromagnetic resistivity logging tool[J]. Journal of China University of Petroleum:Edition of Natural Science, 2017,41(1):78-84.
[19] Kozak M Z, Kozak M E. Estimation of formation shear slowness using phase velocity and semblance method-comparative studies[C] //San Antonio:2001 SEG Annual Meeting, 2001: 1-4.
[1] 赵宝峰, 汪启年, 郭信, 官大维, 陈同刚, 方雯. 汝城盆地深部构造及地热资源赋存潜力——基于重力与AMT探测的认识[J]. 物探与化探, 2023, 47(5): 1147-1156.
[2] 何胜, 王万平, 董高峰, 南秀加, 魏丰丰, 白勇勇. 等值反磁通瞬变电磁法在城市地质调查中的应用[J]. 物探与化探, 2023, 47(5): 1379-1386.
[3] 常小鹏, 陈亮, 张翔, 张凌霄, 朱樟柳, 乔衍溢. 基于不同规范的重力仪双程往返零漂率计算分析[J]. 物探与化探, 2023, 47(5): 1307-1315.
[4] 吴嵩, 宁晓斌, 杨庭伟, 姜洪亮, 卢超波, 苏煜堤. 基于神经网络的探地雷达数据去噪[J]. 物探与化探, 2023, 47(5): 1298-1306.
[5] 周慧, 孙成禹, 刘英昌, 蔡瑞乾. 基于DC-UNet卷积神经网络的强噪声压制方法[J]. 物探与化探, 2023, 47(5): 1288-1297.
[6] 李栋, 朱博华. 基于上覆地层频率约束的匹配追踪强反射层分离方法[J]. 物探与化探, 2023, 47(5): 1261-1272.
[7] 席宇何, 王洪华, 王欲成, 吴祺铭. 基于速度移动窗的最小熵法在GPR逆时偏移中的应用[J]. 物探与化探, 2023, 47(5): 1250-1260.
[8] 周钟航, 张莹莹. 山峰对电性源地面瞬变电磁响应的影响及校正方法[J]. 物探与化探, 2023, 47(5): 1236-1249.
[9] 项诸宝, 张大洲, 朱德兵, 李明智, 熊章强. 不同骨料混凝土模型中瑞利波传播特性研究[J]. 物探与化探, 2023, 47(5): 1226-1235.
[10] 张帆, 冯国瑞, 戚庭野, 余传涛, 张新军, 王超宇, 杜孙稳, 赵德康. 瞬变电磁法勘探煤矿不同层间距双层积水采空区的可行性研究[J]. 物探与化探, 2023, 47(5): 1215-1225.
[11] 游希然, 张继锋, 石宇. 基于人工神经网络的瞬变电磁成像方法[J]. 物探与化探, 2023, 47(5): 1206-1214.
[12] 张利振, 孙成禹, 王志农, 李世中, 焦峻峰, 颜廷容. 面波信息约束的初至波走时层析反演方法[J]. 物探与化探, 2023, 47(5): 1198-1205.
[13] 薛东旭, 刘诚, 郭发, 王俊, 徐多勋, 杨生飞, 张沛. 基于土壤氡气测量和可控源音频大地电磁的陕西眉县汤峪地热预测[J]. 物探与化探, 2023, 47(5): 1169-1178.
[14] 黄彦庆. 川东北元坝地区致密砂岩多产状裂缝刻画[J]. 物探与化探, 2023, 47(5): 1189-1197.
[15] 杨海, 徐学义, 熊盛青, 杨雪, 高卫宏, 范正国, 贾志业. 凤太矿集区航空地球物理异常特征及找矿方向[J]. 物探与化探, 2023, 47(5): 1157-1168.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com