Please wait a minute...
E-mail Alert Rss
 
物探与化探  2021, Vol. 45 Issue (5): 1303-1310    DOI: 10.11720/wtyht.2021.1284
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于广义S变换的透射槽波埃里相识别
陈波1,2(), 朱国维1,2, 武延辉1,2, 杨振强1,2, 周俊杰1,2
1.中国矿业大学(北京) 地球科学与测绘工程学院,北京 100083
2.中国矿业大学(北京) 煤炭资源与安全开采国家重点实验室,北京 100083
Research on identifying the airy phase of transmitted channel waves based on generalized S-transform
CHEN Bo1,2(), ZHU Guo-Wei1,2, WU Yan-Hui1,2, YANG Zhen-Qiang1,2, ZHOU Jun-Jie1,2
1. School of Geoscience and Surveying Engineering,China University of Mining and Technology(Beijing),Beijing 100083,China
2. State Key Laboratory of Coal Resources and Safe Mining,China University of Mining and Technology(Beijing),Beijing 100083,China
全文: PDF(4400 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

透射槽波勘探是查明煤矿工作面地质情况的重要物探方法之一,其频散曲线埃里相识别的合理性直接关系到后续工作面层析成像的准确性。目前,S变换已被广泛应用到频散分析中,然而由于S变换窗函数固定,其应用效果受到限制,为进一步提高频散曲线埃里相的识别精度,本文将窗函数可调的广义S变换引入到频散曲线的分析中。对广义S变换的窗函数采用时间半高宽进行分析,窗函数时间半高宽在给定频率范围内越宽,其时间分辨率低;频率分辨率增高,窗函数宽度越窄,则时间分辨高、频率分辨低。给出了时间半高宽与广义S变换参数的关系式,可根据实际情况定量调节时频分辨率。计算表明,在合理选择广义S变换参数的前提下,广义S变换能有效提高时频分辨率,改善频散曲线埃里相特征,利于解释人员准确拾取透射槽波埃里相。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈波
朱国维
武延辉
杨振强
周俊杰
关键词 广义S变换透射槽波频散埃里相    
Abstract

Transmission seismic exploration in the coal mining face is one of the important geophysical surveys to figure out the geological hazards of coal seam.The rationality of identifying the airy phase from the transmitted channel waves is closely related to the accuracy of the tomography.Nowadays,S-transform is widely used in the analysis of dispersion curve,however,its application is limited with the fixed window.In order to improve the identification accuracy of the airy phase of the dispersion curve,this paper introduces the generalized S-transform with adjustable window into the analysis of dispersion curve.The window of generalized S-transform is analyzed by temporal full width at half maximum (temporal FWHM).For a frequency range,a wider window indicates a lower temporal resolution and a higher frequency resolution,and a narrower window indicates a higher temporal resolution and a lower frequency resolution.The time-frequency resolution can be adjusted quantitatively according to the relationship between the temporal FWHM and the parameters of generalized S-transform in application.The synthetic and real data result show that the generalized S-transform can effectively improve the time-frequency resolution and the airy phase characteristics of the dispersion curve.It is helpful for the interpreter to pick up the airy phase of the transmitted channel waves accurately.

Key wordsgeneralized S-transform    transmitted channel waves    dispersion curve    airy phase
收稿日期: 2020-06-01      修回日期: 2021-05-12      出版日期: 2021-10-20
ZTFLH:  P631.4  
基金资助:国家重点研发计划项目“煤矿隐蔽致灾地质因素动态智能探测技术研究”(2018YFC0807800)
作者简介: 陈波(1984-),男,在读博士研究生,主要从事地震信号分析及层析成像方面的研究工作。Email: chenbo20030925@qq.com
引用本文:   
陈波, 朱国维, 武延辉, 杨振强, 周俊杰. 基于广义S变换的透射槽波埃里相识别[J]. 物探与化探, 2021, 45(5): 1303-1310.
CHEN Bo, ZHU Guo-Wei, WU Yan-Hui, YANG Zhen-Qiang, ZHOU Jun-Jie. Research on identifying the airy phase of transmitted channel waves based on generalized S-transform. Geophysical and Geochemical Exploration, 2021, 45(5): 1303-1310.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2021.1284      或      https://www.wutanyuhuatan.com/CN/Y2021/V45/I5/1303
Fig.1  广义S变换窗函数时间半高宽随频率变化
Fig.2  频率阶梯变化的非平稳信号的S变换和广义S变换(A=0.4239,B=0.471)对比分析
a—频率阶梯变化的非平稳信号;b—图2a的S变换结果;c—图2a的广义S变换结果;d—图2b、图2c虚线处的线谱;e—50 Hz时的S变换和广义S变换窗函数振幅随时间变化;f—S变换和广义S变换窗函数时间半高宽对比
岩性 厚度/m 横波速度/(m·s-1) 密度/(kg·m-3)
顶板砂岩 1800 2600
煤层 2.4 1000 1300
底板砂岩 1800 2600
Table 1  合成Love型槽波物性参数
Fig.3  合成Love型槽波数据S变换和广义S变换(A=0.4239,B=0.471)提取频散曲线对比分析
a—合成Love型槽波记录;b—图3a中第30道槽波记录;c—图3b数据S变换提取的频散曲线;d—图3b数据广义S变换提取的频散曲线
Fig.4  合成Love槽波数据广义S变换(A=2.1195,B=2.355)提取频散曲线
a—50 Hz时的S变换和广义S变换窗函数振幅随时间变化;b—S变换和广义S变换窗函数时间半高宽对比;c—图3b所示数据广义S变换提取的频散曲线
Fig.5  合成Love槽波数据中加入随机噪声后S变换和广义S变换(A=0.4239,B=0.471)提取频散曲线对比分析
a—图3a加入随机噪声后的Love型槽波记录;b—图5a中第30道槽波记录;c—图5b数据S变换提取的频散曲线;d—图5b数据广义S变换提取的频散曲线
Fig.6  实际槽波数据的S变换和广义S变换(A=0.4239,B=0.471)提取频散曲线对比分析
a—某工作面第12炮第10道透射槽波记录;b—图6a数据S变换提取的频散曲线;c—图6a数据广义S变换提取的频散曲线
[1] 武强, 涂坤, 曾一凡, 等. 打造我国主体能源(煤炭)升级版面临的主要问题与对策探讨[J]. 煤炭学报, 2019, 44(6):1625-1636.
[1] Wu Q, Tu K, Zeng Y F, et al. Discussion on the main problems and countermeasures for building an upgrade version of main energy (coal) industry in China[J]. Journal of China Coal Society, 2019, 44(6):1625-1636.
[2] 胡国泽, 滕吉文, 皮娇龙, 等. 井下槽波地震勘探——预防煤矿灾害的一种地球物理方法[J]. 地球物理学进展, 2013, 28(1):439-451.
[2] Hu G Z, Teng J W, Pi J L, et al. In-seam seismic exploration techniques——a geophsical method predictting coal-mine disaster[J]. Progress in Geophysics, 2013, 28(1):439-451.
[3] 张强, 雍自春, 龙自阳, 等. 槽波地震探测技术在金家渠煤矿首采工作面断层探查中的应用[J]. 煤田地质与勘探, 2018, 46(s1):33-36.
[3] Zhang Q, Yong Z C, Long Z Y, et al. Application of channel wave seismic technique in detection of faults in the first working of Jinjiaqu Colliery[J]. Coal Geology & Exploration, 2018, 46(s1):33-36.
[4] Evison F F. A coal seam as a guide for seismic energy[J]. Nature, 1955, 176(4495):1224-1225.
doi: 10.1038/1761224a0
[5] Krey T C. Channel waves as a tool of applied geophysics in coal mining[J]. Geophysics, 1963, 28(5):701-714.
doi: 10.1190/1.1439258
[6] 王伟, 高星, 李松营, 等. 槽波层析成像方法在煤田勘探中的应用——以河南义马矿区为例[J]. 地球物理学报, 2012, 55(3):1054-1062.
[6] Wang W, Gao X, Li S Y, et al. Channel wave tomography method and its application in coal mine exploration: An example from Henan Yima Mining area[J]. Chinese Journal of Geophysics, 2012, 55(3):1054-1062.
[7] 乐勇, 王伟, 申青春, 等. 槽波地震勘探技术在工作面小构造探测中的应用[J]. 煤田地质与勘探, 2013, 41(4):74-77.
[7] Le Y, Wang W, Shen Q C, et al. Application of ISS in detection of small structures in working face[J]. Coal Geology & Exploration, 2013, 41(4):74-77.
[8] 傅皓淳. 煤田槽波地震勘探中层析成像技术应用研究[D]. 北京:中国地质大学(北京), 2015.
[8] Fu H C. Study on seismic tomography in In-Seam seismic exploration in coal field[D]. Beijing:China University of Geosciences (Beijing), 2015.
[9] Feng L, Zhang Y. Dispersion calculation method based on S-transform and coordinate rotation for Love channel waves with two components[J]. Acta Geophysica, 2017, 65(4):757-764.
doi: 10.1007/s11600-017-0069-y
[10] Li D, Castagna J, Goloshubin G. Investigation of generalized S-transform analysis windows for time-frequency analysis of seismic reflection data[J]. Geophysics, 2016, 81(3):V235-V247.
doi: 10.1190/geo2015-0551.1
[11] Stockwell R G, Mansinha L, Lowe R P. Localization of the complex spectrum:The S transform[J]. IEEE Transactions on Signal Processing, 1996, 44(4):998-1001.
doi: 10.1109/78.492555
[12] McFadden P D, Cook J G, Forster L M, et al. Decomposition of gear vibration signals by the generalized S transform[J]. Mechanical Systems and Signal Processing, 1999, 13:691-707.
doi: 10.1006/mssp.1999.1233
[13] 高静怀, 陈文超, 李幼铭, 等. 广义S变换与薄互层地震响应分析[J]. 地球物理学报, 2003, 46(4):526-532.
[13] Gao J H, Chen W C, Li Y M, et al. Generalized S transform and seismic response analysis of thin interbeds[J]. Chinese Journal of Geophysics, 2003, 46(4):526-532.
doi: 10.1002/cjg2.v46.3
[14] Pinnegar R, Mansinha L. The S-transform with windows of arbitrary and varying shape[J]. Geophysics, 2003, 68(1):381-385.
doi: 10.1190/1.1543223
[15] 刘喜武, 年静波, 刘洪. 基于广义S变换的吸收衰减补偿方法[J]. 石油物探, 2006, 45(1):9-14.
[15] Liu X W, Nian J B, Liu H. Generalized S-transform based compensation for stratigraphic absorption of seismic attenuation[J]. Geophysical Prospecting for Petroleum, 2006, 45(1):9-14.
[16] Tian J, Song W, Yang F. Enhancing the resolution of seismic data based on the generalized S-transform[J]. Petroleum Science, 2009, 6:153-157.
doi: 10.1007/s12182-009-0024-x
[17] 陈学华, 贺振华, 黄德济, 等. 时频域油气储层低频阴影检测[J]. 地球物理学报, 2009, 52(1):215-221.
[17] Chen X H, He Z H, Huang D J, et al. Low frequency shadow detection of gas reservoirs in time-frequency domain[J]. Chinese Journal of Geophysics, 2009, 52(1):215-221.
[18] 夏亚良, 魏小东, 叶玉峰, 等. 广义S变换多频解释技术及其在薄层评价中的应用[J]. 物探与化探, 2019, 43(1):168-175.
[18] Xia Y L, Wei X D, Ye Y F, et al. Generalized S transform multi-frequency interpretation technique and its application in thin reservoir evaluation[J]. Geophysical and Geochemical Exploration, 2019, 43(1):168-175.
[19] 安鹏, 于志龙, 刘专, 等. 敏感频率地震属性在薄层砂体预测中的应用——以松辽盆地肇源地区为例[J]. 物探与化探, 2020, 44(2):321-328.
[19] An P, Yu Z L, Liu Z, et al. The application of sensitive frequency seismic attributes to thin sand body prediction:Exemplified by Zhaoyuan area in Songliao Basin[J]. Geophysical and Geochemical Exploration, 2020, 44(2):321-328.
[20] 张先武, 高云泽, 方广有. 带有低通滤波的广义S变换在探地雷达层位识别中的应用[J]. 地球物理学报, 2013, 56(1):309-316.
[20] Zhang X W, Gao Y Z, Fang G Y. Application of generalized S transform with lowpass filtering to layer recognition of Ground Penetrating Radar[J]. Chinese Journal of Geophysics, 2013, 56(1):309-316.
[21] 邵广周, 董晋, 董兆堂. 利用瑞利波广义S变换探测近地表裂缝[J]. 物探与化探, 2018, 42(2):398-404.
[21] Shao G Z, Dong J, Dong Z T. The application of generalized S-transform of Rayleigh waves to detecting near-surface fissures[J]. Geophysical and Geochemical Exploration, 2018, 42(2):398-404.
[22] 陈学华, 贺振华. 改进的S变换及在地震信号处理中的应用[J]. 数据采集与处理, 2005, 20(4):449-453.
[22] Chen X H, He Z H. Improved S-transform and its application in seismic signal processing[J]. Journal of Data Acquisition and Processing, 2005, 20(4):449-453.
[23] 程久龙. Love型槽波理论地震图的计算[J]. 山东矿业学院学报, 1994, 13(4):349-353.
[23] Cheng J L. Calculation of theoretical seismograms of Love channel waves[J]. Journal of Shandong Mining Institute, 1994, 13(4):349-353.
[24] Räder D, Schott W, Dresen L, et al. Calculation of dispersion curves and amplitude-depth distributions of love channel waves in horizontally-layered media[J]. Geophysical Prospecting, 1985, 33:800-816.
doi: 10.1111/gpr.1985.33.issue-6
[25] 杨真, 冯涛, Wang S G. 0.9 m薄煤层SH型槽波频散特征及波形模式[J]. 地球物理学报, 2010, 53(2):442-449.
[25] Yang Z, Feng T, Wang S G. Dispersion characteristics and wave shape mode of SH channel wave in a 0.9 m thin coal seam[J]. Chinese Journal of Geophysics, 2010, 53(2):442-449.
[1] 张利振, 孙成禹, 王志农, 李世中, 焦峻峰, 颜廷容. 面波信息约束的初至波走时层析反演方法[J]. 物探与化探, 2023, 47(5): 1198-1205.
[2] 项诸宝, 张大洲, 朱德兵, 李明智, 熊章强. 不同骨料混凝土模型中瑞利波传播特性研究[J]. 物探与化探, 2023, 47(5): 1226-1235.
[3] 李传金, 王强, 渐翔, 郑涛, 詹素华, 陈绍伟. 微动信号模拟及其在微动勘探中的应用[J]. 物探与化探, 2023, 47(4): 1040-1047.
[4] 张入化, 张洞君, 黄建平, 苟其勇, 周嘉妮. 基于LSCG法和波数补偿的频率域二维地震正演模拟方法[J]. 物探与化探, 2023, 47(2): 384-390.
[5] 李欣欣, 李江, 刘军, 沈鸿雁. 基于改进相移法的煤田地震瑞利波资料处理[J]. 物探与化探, 2022, 46(6): 1470-1476.
[6] 孙旭, 计子琦, 杨庆义, 刘博政. 基于改进麻雀搜索算法的瑞利波频散曲线反演[J]. 物探与化探, 2022, 46(5): 1267-1275.
[7] 吴为治, 娄利, 王鹏, 王宾. 基于Python语言的瑞利面波频散反演实行方案[J]. 物探与化探, 2022, 46(3): 743-749.
[8] 刘辉, 李静, 曾昭发, 王天琪. 基于贝叶斯理论面波频散曲线随机反演[J]. 物探与化探, 2021, 45(4): 951-960.
[9] 贺文, 蔡加铭, 宋志华, 李海银, 张浩, 黄孔智, 管延斌. 基于TK能量的峰值频率在沉积旋回划分中的应用[J]. 物探与化探, 2020, 44(6): 1336-1344.
[10] 董耀, 李光辉, 高鹏举, 任静, 肖娟. 微动勘查技术在地热勘探中的应用[J]. 物探与化探, 2020, 44(6): 1345-1351.
[11] 张保卫, 董晋, 吴华. 粘弹介质勒夫波频散曲线研究及应用[J]. 物探与化探, 2020, 44(3): 599-606.
[12] 邵广周, 岳亮, 李远林, 吴华. 被动源瑞利波两道法提取频散曲线的质量控制方法[J]. 物探与化探, 2019, 43(6): 1297-1308.
[13] 肖占山, 赵云生, 赵宝成, 李强, 胡海涛, 邵琨, 姚春明. 基于岩石电性参数频散特性的储层参数评价方法[J]. 物探与化探, 2019, 43(5): 1105-1110.
[14] 夏亚良, 魏小东, 叶玉峰, 陈鑫, 王红梅, 李艳静, 马英哲, 严晓欢. 广义S变换多频解释技术及其在薄层评价中的应用[J]. 物探与化探, 2019, 43(1): 168-175.
[15] 王波, 夏同星, 明君, 郭帅. 油气敏感频率段极值能量和因子及其在渤海油田油气检测中的应用[J]. 物探与化探, 2018, 42(5): 1026-1032.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com