Please wait a minute...
E-mail Alert Rss
 
物探与化探  2020, Vol. 44 Issue (3): 599-606    DOI: 10.11720/wtyht.2020.1386
     方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
粘弹介质勒夫波频散曲线研究及应用
张保卫1,2, 董晋3, 吴华4
1. 中国地质科学院 地球物理地球化学勘查研究所,河北 廊坊 065000
2. 国家现代地质勘查工程技术研究中心,河北 廊坊 065000
3. 铁道第三勘察设计院集团有限公司,天津 300251
4. 长安大学 理学院,陕西 西安 710064
A study of dispersion curves of Love waves in viscoelastic media and their application
Bao-Wei ZHANG1,2, Jin DONG3, Hua WU4
1. Institute of Geophysical and Geochemical Exploration,Chinese Academy of Geological Sciences,Langfang 065000,China
2. National Center for Geological Exploration Technology,Langfang 065000,China
3. The Third Railway Survey and Design Institute Group Corporation,Tianjin 300251,China
4. School of Science,Chang'an University,Xi'an 710064, China
全文: PDF(3769 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

研究表明,与瑞利波方法相比,勒夫波具有频散曲线求解更加简单、数据信噪比更高、频散曲线反演对初始模型的依赖程度更低等优点,已开始在众多领域得到应用和推广。但还存在一些亟待解决的问题,比如在实际的地球模型中,地层介质是具有粘弹性的,尤其是近地表第四系软土对地震波的吸收衰减作用更为显著。因此,开展粘弹介质勒夫波理论频散曲线研究具有重要的现实意义。本文通过求解频散方程获得勒夫波理论相速度频散曲线,采用高阶有限差分模拟得到粘弹介质情况下的勒夫波单炮记录,并从中提取对应的频散曲线。通过理论模型提取得到频散曲线与理论频散曲线相对比,证明了本文频散曲线计算的正确性,并讨论了粘弹性介质对勒夫波频散曲线的影响,介质的粘弹性会导致勒夫波相速度的高频极限要比完全弹性介质的相速度略高。然后,通过最小二乘法反演,验证了算法程序的稳定性和可行性,结果表明采用粘弹介质频散曲线反演所得横波速度精度更高,最后通过野外实际数据反演结果进一步验证了本文方法的有效性和实际应用效果。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张保卫
董晋
吴华
关键词 粘弹介质勒夫波频散曲线    
Abstract

At present,the geological situation of seismic exploration is becoming more and more complicated.With the continuous development of seismic exploration,especially for viscoelastic media,the technical requirements for surface wave exploration are getting higher and higher.Love wave refers to the horizontal polarization shear wave in the surface layer after repeated reflections at the boundary of the surface layer.Love wave detection is one of the shallow surface detection method.It is very convenient and has high detection precision.Therefore,the study of Love wave has important theoretical and practical significance.In this paper,the Love wave single shot record is simulated by high order finite difference method in the case of horizontal layered complex geological.The comparison of the dispersion curves with the theoretical dispersion curves proves that the method proposed in this paper is correct.The influence of the viscoelastic medium on the Love wave dispersion curve is also discussed.Then,the least squares inversion is used to verify this conclusion.This paper provides a more complete theoretical basis for the high-precision surface wave inversion method.Finally,the field data inversion results show that the proposed method is effective and practicable.

Key wordsviscoelastic media    Love wave    dispersion curve
收稿日期: 2019-07-27      出版日期: 2020-06-24
:  P631.4  
基金资助:国家重点研发计划项目(2018YFF01013504);中国地质调查局地质调查项目(DD20189133);中国地质调查局地质调查项目(DD20190556);国家自然科学基金项目(41874123);国家自然科学基金项目(41004043);长安大学中央高校基金项目(300102268402);长安大学中央高校基金项目(300102129111);物化探所中央财政科研项目结余资金资助项目(JY201703)
作者简介: 张保卫(1980-) ,男,2007 年毕业于长安大学,硕士,高级工程师,主要从事地震勘探方法技术的研究工作。Email: zhangbaowei@igge.cn
引用本文:   
张保卫, 董晋, 吴华. 粘弹介质勒夫波频散曲线研究及应用[J]. 物探与化探, 2020, 44(3): 599-606.
Bao-Wei ZHANG, Jin DONG, Hua WU. A study of dispersion curves of Love waves in viscoelastic media and their application. Geophysical and Geochemical Exploration, 2020, 44(3): 599-606.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2020.1386      或      https://www.wutanyuhuatan.com/CN/Y2020/V44/I3/599
Fig.1  水平均匀介质模型
Fig.2  三层速度递增模型
Fig.3  完全弹性介质与粘弹介质(Q=50、Q=20)单炮模拟记录(水平分量)对比
a—完全弹性介质;b—粘弹性介质Q=50;c—粘弹性介质Q=20
Fig.4  完全弹性介质与粘弹介质(Q=50、Q=20)单道记录(水平分量)波形对比
a—第25道波形对比;b—第48道波形对比
Fig.5  完全弹性介质与粘弹介质理论频散曲线与单炮记录频散能量对比
a—完全弹性介质;b—粘弹性介质Q=50;c—粘弹性介质Q=20
Fig.6  完全弹性介质与粘弹介质理论频散曲线对比
Fig.7  理论频散曲线横波速度反演结果
Fig.8  野外试验场景
Fig.9  第一炮野外勒夫波记录(a)及其频散曲线(b)
Fig.10  野外实际资料频散曲线反演二维横波速度结构断面
[1] Rayleigh L. On waves propagated along the plane surface of an elastic solid[J]. Proceedings of the London Mathematical Society, 1887,17:4-11.
[2] Love A E H. Some problems of geodynamics[J]. Nature, 1912,89:471-472.
doi: 10.1038/089471a0
[3] Xia J, Xu Y, Luo Y. Advantages of using multichannel analysis of Love Waves(MALW) to estimate near-surface shear-wave velocity[J]. Surveys in Geophysics, 2012,33:841-860.
doi: 10.1007/s10712-012-9174-2
[4] Yin X, Xia J, Shen C, et al. Comparative analysis on penetrating depth of high-frequency Rayleigh and Love waves[J]. Journal of Applied Geophysics, 2014,111:86-94.
doi: 10.1016/j.jappgeo.2014.09.022
[5] Lai C G, Rix G J. Solution of the Rayleigh eigenproblem in viscoelastic media[J]. Bulletin of Seismological Society of America, 2002,92(6):2297-2309.
[6] Zhang K, Luo Y H, Xia J H. Pseudospectral modeling and dispersion analysis of Rayleigh waves in viscoelastic media[J]. Soil Dynamics and Earthquake Engineering, 2011,31(10):1332-1337.
doi: 10.1016/j.soildyn.2011.05.004
[7] 高静怀, 何洋洋, 马逸尘. 黏弹性与弹性介质中Rayleigh面波特性对比研究[J]. 地球物理学报, 2012,55(1):207-218.
doi: 10.6038/j.issn.0001-5733.2012.01.020
[7] Gao J H, He Y Y, Ma Y C. Comparison of the Rayleigh wave in elastic and viscoelastic media[J]. Chinese Journal of Geophysics, 2012,55(1):207-218.
[8] 张凯, 张保卫, 刘建勋, 等. 层状黏弹性介质中Rayleigh波频散曲线“交叉”现象分析[J]. 地球物理学报, 2016,59(3):972-980.
[8] Zhang K, Zhang B W, Liu J X, et al. Analysis on the cross of Rayleigh-wave dispersion curves in viscoelastic layered media[J]. Chinese Journal of Geophysics, 2016,59(3):972-980.
[9] Winsborrow G, Huws D G, Muyzert E. Acquisition and inversion of Love wave data to measure the lateral variability of geo-acoustic properties of marine sediments[J]. Journal of Applied Geophysics, 2003,54(1):71-84.
doi: 10.1016/j.jappgeo.2003.07.001
[10] Wang Y S, Zhang Z M, Ke L L. Propagation of Love waves in an inhomogeneous fluid saturated porous layered half-space with properties varying exponentially[J]. Journal of Engineering Mechanics, 2005,131(12):1322-1328.
doi: 10.1061/(ASCE)0733-9399(2005)131:12(1322)
[11] Safani J O’Neill A Matsuoka T. Love wave modelling and inversion for low velocity layer cases[C]// Symposium on the Application of Geophysics to Engineering and Environmental Problems 2006,Environment and Engineering Geophysical Society, 2006: 1181-1190.
[12] 马志杰, 董连成. Love波相速度频散曲线敏感性比较[J]. 山西建筑, 2008,34(12):121-122.
[12] Ma Z J, Dong L C, The comparison of the sensibility of Love wave speed frequency dispersion curve[J]. Shanxi Architecture, 2008,34(12):121-122.
[13] Luo Y, Xia J, Xu Y, et al. Finite-difference modeling and dispersion analysis of high-frequency love waves for near-surface applications[J]. Pure and Applied Geophysics, 2010,167(12):1525-1536.
doi: 10.1007/s00024-010-0144-7
[14] Xia J, Yin X, Xu Y. Feasibility of determining Q of near-surface materials from Love waves[J]. Journal of Applied Geophysics, 2013,95(95):47-52.
doi: 10.1016/j.jappgeo.2013.05.007
[15] Anderson D L, Ari B, Archambeau C B. Attenuation of Seismic Energy in the Upper Mantle[J]. Journal of Geophysical Research Atmospheres, 1965,70(6):1441-1448.
doi: 10.1029/JZ070i006p01441
[16] 谢俊法, 孙成禹, 伍敦仕, 等. 基于无分裂复频移卷积完全匹配层边界的黏弹介质勒夫波模拟[J]. 地震学报, 2016,38(2):244-258.
[16] Xie J F, Sun C Y, Wu D S, et al. Love wave modeling in viscoelastic media with unsplit CFS-CPML conditions[J]. Acta Seismologica Sinica, 2016,38(2):244-258.
[17] 伍敦仕, 孙成禹, 林美言, 等. 黏弹介质中勒夫波频散问题的统一解及其动态特征分析[J]. 地球物理学报, 2017,60(2):688-703.
[17] Wu D S, Sun C Y, Lin M Y, et al. Unified solution of the Love-wave dispersion problem and its dynamic features in a viscoelastic medium[J]. Chinese Journal of Geophysics, 2017,60(2):688-703.
[18] Morrison M W. In-Situ viscoelastic soil parameter estimation using love wave inversion[D]. Boise:Boise State University, 2014.
[19] 邵广周, 赵凯鹏, 吴华. 基于MPI的面波有限差分正演模拟[J]. 吉林大学学报:地球科学版, 2020,50(1):294-303.
[19] Shao G Z, Zhao K P, Wu H. Finite difference forward modeling of surface waves based on MPI[J]. Journal of Jilin University:Earth Science Edition, 2020,50(1):294-303.
[20] 邵广周, 李庆春. 联合应用τ-p变换法和相移法提取面波频散曲线[J]. 石油地球物理勘探, 2010,45(6):836-840.
[20] Shao G Z, Li Q C. Joint application of τ-p and phase-shift stacking method to extract ground wave dispersion curve[J]. OGP, 2010,45(6):836-840.
[21] 吴华, 李庆春, 邵广周. 瑞利波波形反演的发展现状及展望[J]. 物探与化探, 2018,42(6):1103-1111.
[21] Wu H, Li Q C, Shao G Z. Development status and prospect of Rayleigh waveform inversion[J]. Geophysical and Geochemical Exploration, 2018,42(6):1103-1111.
[1] 刘辉, 李静, 曾昭发, 王天琪. 基于贝叶斯理论面波频散曲线随机反演[J]. 物探与化探, 2021, 45(4): 951-960.
[2] 董耀, 李光辉, 高鹏举, 任静, 肖娟. 微动勘查技术在地热勘探中的应用[J]. 物探与化探, 2020, 44(6): 1345-1351.
[3] 邵广周, 岳亮, 李远林, 吴华. 被动源瑞利波两道法提取频散曲线的质量控制方法[J]. 物探与化探, 2019, 43(6): 1297-1308.
[4] 林丹丹, 熊章强, 张大洲. 基于多模式分离的S变换与小波变换提取面波频散曲线对比分析[J]. 物探与化探, 2014, (3): 544-551.
[5] 李杰, 陈宣华, 张交东, 周琦, 刘刚, 刘志强, 徐燕, 李冰, 杨婧. 频率—波数域频散曲线提取方法及程序设计[J]. 物探与化探, 2011, 35(5): 684-688.
[6] 杨小慧, 李德春, 于鹏飞. 煤层中瑞利型槽波的频散特性[J]. 物探与化探, 2010, 34(6): 750-752.
[7] 翟佳羽, 赵园园, 安丁酉. 面波频散反演地下层状结构的蚁群算法[J]. 物探与化探, 2010, 34(4): 476-481.
[8] 王慧茹. 谱模拟频谱比法反演品质因子稳定性分析[J]. 物探与化探, 2009, 33(1): 85-87.
[9] 夏学礼, 仇恒永, 孙秀容, 王治华, 王书增. 多道瞬态面波勘探频散曲线唯一性问题[J]. 物探与化探, 2008, 32(2): 168-170,174.
[10] 杨天春, 易伟建, 何继善, 吕绍林. 求取道路结构型地层瑞利波频散曲线的方法[J]. 物探与化探, 2005, 29(5): 459-462.
[11] 杨天春, 何继善, 吕绍林, 王齐仁, 姚成华. 三层层状介质中瑞利波的频散曲线特征[J]. 物探与化探, 2004, 28(1): 41-45.
[12] 宋先海, 肖柏勋, 张学强, 顾汉明, 刘江平. 用改进的τ-p变换算法提取瞬态瑞雷波频散曲线[J]. 物探与化探, 2003, 27(4): 292-295.
[13] 宋先海, 肖柏勋, 黄荣荣, 顾汉明, 张学强. 用等厚薄层权重自适应迭代阻尼最小二乘法反演瑞雷波频散曲线[J]. 物探与化探, 2003, 27(3): 212-216.
[14] 杜正涛, 刘丽敏, 程道伟. 瑞雷面波勘探技术在第四系分层方面的应用[J]. 物探与化探, 1999, 23(4): 277-282.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com