Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (6): 1470-1476    DOI: 10.11720/wtyht.2022.0078
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于改进相移法的煤田地震瑞利波资料处理
李欣欣1,2,3(), 李江4, 刘军4, 沈鸿雁1,2
1.西安石油大学 地球科学与工程学院,陕西 西安 710065
2.西安石油大学 陕西省油气成藏地质学重点实验室,陕西 西安 710065
3.中国石化地球物理重点实验室,江苏 南京 211103
4.中煤科工集团西安研究院有限公司,陕西 西安 710077
Processing of the seismic Rayleigh wave data of coalfields based on the improved phase-shift method
LI Xin-Xin1,2,3(), LI Jiang4, LIU Jun4, SHEN Hong-Yan1,2
1. College of Earth Sciences & Engineering,Xi'an Shiyou University,Xi'an 710065,China
2. Shaanxi Key Laboratory of Petroleum Accumulation Geology,Xi'an Shiyou University,Xi'an 710065,China
3. SINOPEC Key Laboratory of Geophysics,Nanjing 211103,China
4. Xi'an Research Institute Co. Ltd.,China Coal Technology and Engineering Group Corp.,Xi'an 710077,China
全文: PDF(3848 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

相移法是一种常用的提取瑞利波频散曲线的方法,然而在复杂波场条件下,相移法计算的频谱中瑞利波频散能量分辨率较差,使得频散曲线的准确性降低。本文对相移法进行改进,将频散谱上各点的振幅值进行求幂运算,以提高频散能量的收敛性与聚焦性。我们利用改进的相移法对理论地层模型的模拟数据和某研究区的煤田地震实际数据进行处理,将处理结果与常规相移法生成的频散谱对比分析,并对实际资料的频散曲线进行反演,生成研究区地层的二维(2D)横波速度剖面。研究结果表明改进的相移法能够增强瑞利波信号在频率—速度域中的信噪比,提高频散能量谱的分辨率和频散曲线的准确性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李欣欣
李江
刘军
沈鸿雁
关键词 瑞利波相移法频散曲线    
Abstract

The phase-shift method is commonly used to extract the Rayleigh wave dispersion curves.However,in the case of a complex wave field,the dispersion spectra calculated using the phase-shift method have a low resolution of Rayleigh wave dispersion energy,reducing the accuracy of the dispersion curves.This study improved the phase-shift method by obtaining the power exponent of the amplitude of each point on the dispersion spectra to improve the convergence and focusing properties of the dispersion energy.The improved phase-shift method was used to process the simulated data of the theoretical stratigraphic model and the actual seismic data of a coalfield in a certain study area.The processing results were compared with the dispersion spectra generated using the conventional phase-shift method.Moreover,the inversion based on dispersion curves of the actual data was conducted to generate a two-dimensional (2D) S-wave velocity section of the study area.As revealed by the study results,the improved phase-shift method can enhance the signal-to-noise ratio of the Rayleigh wave signals in the frequency-velocity domain and improve the resolution of the dispersion energy spectra and the accuracy of the dispersion curves.

Key wordsRayleigh wave    phase-shift method    dispersion curve
收稿日期: 2022-02-24      修回日期: 2022-10-22      出版日期: 2022-12-20
ZTFLH:  P631.4  
基金资助:陕西省自然科学基础研究计划资助项目(2021JQ-589);中国石化地球物理重点实验室开放基金资助项目(33550006-20-ZC0699-0009)
作者简介: 李欣欣(1989-),男,陕西西安人,博士,讲师,研究方向为地震成像理论与方法。Email:xxli@xsyu.edu.cn
引用本文:   
李欣欣, 李江, 刘军, 沈鸿雁. 基于改进相移法的煤田地震瑞利波资料处理[J]. 物探与化探, 2022, 46(6): 1470-1476.
LI Xin-Xin, LI Jiang, LIU Jun, SHEN Hong-Yan. Processing of the seismic Rayleigh wave data of coalfields based on the improved phase-shift method. Geophysical and Geochemical Exploration, 2022, 46(6): 1470-1476.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.0078      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I6/1470
Fig.1  原始振幅曲线与振幅均衡处理后曲线对比
a—原始多峰振幅曲线;b—经过4次方幂运算处理后的曲线
层号 h /m ρ/(kg?m-3) vp/(m?s-1) vs /(m?s-1)
1 10.0 2000.0 900.0 300.0
2 5.0 2000.0 1500.0 500.0
半空间 ~ 2000.0 1200.0 400.0
Table 1  理论模型地层参数
Fig.2  理论模型数值模拟试算
a—模拟地震数据;b—常规相移法生成的频散能量;c—改进的相移法生成的频散能量
Fig.3  原始炮记录
a—第1炮160~360道记录;b—第1炮186~210道记录
Fig.4  常规相移法(a)和改进的相移法(b)生成的频散能量谱
Fig.5  第1炮记录的频散曲线(a)及第1炮测点下方的地层横波速度结构(b)
Fig.6  研究区2D横波速度结构剖面
[1] 丁连靖, 冉伟彦. 天然源面波频率—波数法的应用[J]. 物探与化探, 2005, 29(2):138-141,145.
[1] Ding L J, Ran W Y. The application of natural source surface wave frequency-waves method[J]. Geophysical and Geochemical Exploration, 2005, 29(2): 138-141,145.
[2] Gribler G, Liberty L M, Mikesell T D, et al. Isolating retrograde and prograde Rayleigh-wave modes using a polarity mute[J]. Geophysics, 2016, 81(5):V379-V385.
doi: 10.1190/geo2015-0683.1
[3] 夏江海, 高玲利, 潘雨迪, 等. 高频面波方法的若干新进展[J]. 地球物理学报, 2015, 58(8):2591-2605.
[3] Xia J H, Gao L L, Pan Y D, et al. New findings in high-frequency surface wave method[J]. Chinese Journal of Geophysics, 2015, 58(8):2591-2605.
[4] 杨成林. 瑞雷波勘探[M]. 北京: 地质出版社, 1993.
[4] Yang C L. Rayleigh wave exploration[M]. Beijing: Geological Publishing House, 1993.
[5] Park C B, Miller R D, Xia J H. Multichannel analysis of surface waves[J]. Geophysics, 1999, 64(3):800-808.
doi: 10.1190/1.1444590
[6] 王建文, 孙秀容, 王宏科, 等. 双源面波地震勘探在煤层采空区探测中的应用[J]. 工程地球物理学报, 2010, 7(4):403-407.
[6] Wang J W, Sun X R, Wang H K, et al. Application of double-source surface wave prospecting in coal mined-out area[J]. Chinese Journal of Engineering Geophysics, 2010, 7(4):403-407.
[7] 王建文, 孙秀容, 王宏科, 等. 综合地震勘探方法在陕北煤田采空区探测中的应用[J]. 中国煤炭地质, 2010, 22(9):48-54.
[7] Wang J W, Sun X R, Wang H K, et al. Application of integrated seismic prospecting in northern Shaanxi Coalfields Gob area detection[J]. Coal Geology of China, 2010, 22(9):48-54.
[8] 尹晓菲, 胥鸿睿, 夏江海, 等. 一种基于层析成像技术提高浅地表面波勘探水平分辨率的方法[J]. 地球物理学报, 2018, 61(6):2380-2395.
[8] Yin X F, Xu H R, Xia J H, et al. A travel-time tomography method for improving horizontal resolution of high-frequency surface-wave exploration[J]. Chinese Journal of Geophysics, 2018, 61(6):2380-2395.
[9] 郑立宁, 谢强, 冯治国, 等. 瞬态瑞雷面波法岩溶路基注浆质量检测现场试验研究[J]. 岩土工程学报, 2011, 33(12):1934-1937.
[9] Zheng L N, Xie Q, Feng Z G, et al. Field tests on grouting effect of karst roadbed based on transient Rayleigh wave method[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12):1934-1937.
[10] 蔡露曦, 付兰兰, 王强, 等. 基于改进面波技术的转换波静校正方法研究[J]. 非常规油气, 2021, 8(3):17-22.
[10] Cai L X, Fu L L, Wang Q, et al. Research on static correction method of converted wave based on improved surface wave technology[J]. Unconventional Oil & Gas, 2021, 8(3):17-22.
[11] 姜福豪, 李培明, 张翊孟, 等. 多道面波频散分析在实际大炮数据中的应用[J]. 石油地球物理勘探, 2018, 53(1):17-24.
[11] Jiang F H, Li P M, Zhang X M, et al. Frequency dispersion analysis of MASW in real seismic data[J]. Oil Geophysical Prospecting, 2018, 53(1):17-24.
[12] 吴华, 李庆春, 邵广周. 瑞利波波形反演的发展现状及展望[J]. 物探与化探, 2018, 42(6):1103-1111.
[12] Wu H, Li Q C, Shao G Z. Development status and prospect of Rayleigh waveform inversion[J]. Geophysical and Geochemical Exploration, 2018, 42(6):1103-1111.
[13] 刘辉, 李静, 曾昭发, 等. 基于贝叶斯理论面波频散曲线随机反演[J]. 物探与化探, 2021, 45(4): 951-960.
[13] Liu H, Li J, Zeng S F, et al. Stochastic inversion of surface dispersion curves based on Bayesian theory[J]. Geophysical and Geochemical Exploration, 2021, 45(4): 951-960.
[14] 周云腾, 张致付. F-K域多尺度瑞雷面波全波形反演[J]. 地球物理学进展, 2020, 35(6):2309-2314.
[14] Zhou Y T, Zhang Z F. Multiscale Rayleigh wave full waveform inversion in F-K domain[J]. Progress in Geophysics, 2020, 35(6):2309-2314.
[15] Li J, Feng Z, Gerard S. Wave-equation dispersion inversion[J]. Geophysical Journal International, 2017, 208(3):1567-1578.
doi: 10.1093/gji/ggw465
[16] 胡明顺, 潘冬明, 李娟娟, 等. 基于频散曲线合成面波地震记录的方法[J]. 煤田地质与勘探, 2010, 38(2):59-62.
[16] Hu M S, Pan D M, Li J J, et al. The method of synthesizing surface-wave seismogram based on dispersion curves[J]. Coal Geology & Exploration, 2010, 38(2):59-62.
[17] 李晓斌, 杨振威, 云美厚, 等. 矿山微地震四线交错观测系统与面波速度成像[J]. 煤炭学报, 2019, 44(S2):643-649.
[17] Li X B, Yang Z W, Yun M H, et al. Four-line staggered grid survey layout of mine micro-seismic and surface wave velocity structure imaging[J]. Journal of China Goal Society, 2019, 44(S2):643-649.
[18] 杨天春, 吴燕清, 刘新华. 对瑞利波频散曲线计算中高频数值溢出的处理[J]. 煤炭学报, 2007, 32(10):1041-1045.
[18] Yang T C, Wu Y Q, Liu X H. Treating of numerical overflow in high frequency for computing Rayleigh wave dispersion curves[J]. Journal of China Goal Society, 2007, 32(10):1041-1045.
[19] 董智开, 段文胜, 肖承文, 等. 基于快速标量传递算法的瑞雷波频散曲线反演研究[J]. 北京大学学报:自然科学版, 2020, 56(4):614-628.
[19] Dong Z K, Duan W S, Xiao C W, et al. Inversion research of Rayleigh wave dispersion curve based on fast scalar transfer algorithm[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2020, 56(4):614-628.
[20] Yilmaz O Z. Seismic data processing[M]. Tulsa: Society of Exploration Geophysicists, 1987.
[21] Park C B, Miller R D, Xia J H. Imaging dispersion curves of surface waves on multi-channel record[C]// SEG Technical Program Expanded Abstracts, 1998:1377-1380.
[22] Mcmechan G A, Yedlin M J. Analysis of dispersive waves by wavefield transformation[J]. Geophysics, 1981, 46(6):869-874.
doi: 10.1190/1.1441225
[23] Xia J H, Xu Y X, Miller R D. Generating an image of dispersive energy by frequency decomposition and slant stacking[J]. Pure and Applied Geophysics, 2007, 164(5):941-956.
doi: 10.1007/s00024-007-0204-9
[24] 罗银河, 夏江海, 刘江平, 等. 基阶与高阶瑞利波联合反演研究[J]. 地球物理学报, 2008, 51(1):242-249.
[24] Luo Y H, Xia J H, Liu J P, et al. Joint inversion of fundamental and higher mode Rayleigh waves[J]. Chinese Journal of Geophysics, 2008, 51(1):242-249.
[25] 邵广周, 李庆春. 联合应用τ-p变换法和相移法提取面波频散曲线[J]. 石油地球物理勘探, 2010, 45(6):836-840.
[25] Shao G, Li Q C. Joint application of τ-p and phase-shift stacking method to extract ground wave dispersion curve[J]. Oil Geophysics Prospecting, 2010, 45(6):836-840.
[26] 沈超. 高频面波在速度非递增水平层状模型中的频散特性及反演[D]. 武汉: 中国地质大学(武汉), 2017.
[26] Shen C. Dispersion characteristics and inversion of high-frequency surface waves in horizontal layered models with velocity not increasing with depth[D]. Wuhan: China University of Geosciences(Wuhan), 2017.
[27] 侯世宁, 薛海飞, 董守华, 等. 地质条件复杂地区瑞雷波勘探正演模拟[J]. 煤田地质与勘探, 2010, 38(6):66-70.
[27] Hou S N, Xue H F, Dong S H, et al. Forward modeling of Rayleigh wave exploration in geologically complicated areas[J]. Coal Geology & Exploration, 2010, 38(6):66-70.
[1] 项诸宝, 张大洲, 朱德兵, 李明智, 熊章强. 不同骨料混凝土模型中瑞利波传播特性研究[J]. 物探与化探, 2023, 47(5): 1226-1235.
[2] 李传金, 王强, 渐翔, 郑涛, 詹素华, 陈绍伟. 微动信号模拟及其在微动勘探中的应用[J]. 物探与化探, 2023, 47(4): 1040-1047.
[3] 孙旭, 计子琦, 杨庆义, 刘博政. 基于改进麻雀搜索算法的瑞利波频散曲线反演[J]. 物探与化探, 2022, 46(5): 1267-1275.
[4] 刘辉, 李静, 曾昭发, 王天琪. 基于贝叶斯理论面波频散曲线随机反演[J]. 物探与化探, 2021, 45(4): 951-960.
[5] 董耀, 李光辉, 高鹏举, 任静, 肖娟. 微动勘查技术在地热勘探中的应用[J]. 物探与化探, 2020, 44(6): 1345-1351.
[6] 张保卫, 董晋, 吴华. 粘弹介质勒夫波频散曲线研究及应用[J]. 物探与化探, 2020, 44(3): 599-606.
[7] 栾明龙. 瞬态瑞利波技术在地基强夯质量检测中的应用效果[J]. 物探与化探, 2020, 44(3): 615-625.
[8] 杨道煌, 刘江平, 程飞, 庞凯旋. 超声面波法在混凝土强度检测中的应用研究[J]. 物探与化探, 2020, 44(3): 626-634.
[9] 邵广周, 岳亮, 李远林, 吴华. 被动源瑞利波两道法提取频散曲线的质量控制方法[J]. 物探与化探, 2019, 43(6): 1297-1308.
[10] 吴华, 李庆春, 邵广周. 瑞利波波形反演的发展现状及展望[J]. 物探与化探, 2018, 42(6): 1103-1111.
[11] 邵广周, 董晋, 董兆堂. 利用瑞利波广义S变换探测近地表裂缝[J]. 物探与化探, 2018, 42(2): 398-404.
[12] 林丹丹, 熊章强, 张大洲. 基于多模式分离的S变换与小波变换提取面波频散曲线对比分析[J]. 物探与化探, 2014, (3): 544-551.
[13] 栾明龙, 魏红, 林万顺. 瞬态瑞利波技术在工程勘察中的应用[J]. 物探与化探, 2012, 36(5): 878-883.
[14] 李杰, 陈宣华, 张交东, 周琦, 刘刚, 刘志强, 徐燕, 李冰, 杨婧. 频率—波数域频散曲线提取方法及程序设计[J]. 物探与化探, 2011, 35(5): 684-688.
[15] 杨小慧, 李德春, 于鹏飞. 煤层中瑞利型槽波的频散特性[J]. 物探与化探, 2010, 34(6): 750-752.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com