Please wait a minute...
E-mail Alert Rss
 
物探与化探  2020, Vol. 44 Issue (3): 677-684    DOI: 10.11720/wtyht.2020.0059
     中国地质学会勘探地球物理专委会2019年会优秀论文 本期目录 | 过刊浏览 | 高级检索 |
大地电磁测深首枝频点统计求平均法在连片静位移区的校正实验研究
吕琴音1,2,3, 张小博1,2,3(), 仇根根1,2,3, 王刚1,2,3
1. 中国地质科学院 地球物理地球化学勘查研究所,河北 廊坊 065000
2. 国家现代地质勘查工程技术研究中心,河北 廊坊 065000
3. 自然资源部 地球物理电磁法探测技术重点实验室,河北 廊坊 065000
An experimental study of the correction of the statistical averaging method of frequency points in the first branch of magnetotelluric sounding in the static displacement zone
Qin-Yin LYU1,2,3, Xiao-Bo ZHANG1,2,3(), Gen-Gen QIU1,2,3, Gang WANG1,2,3
1. Institute of Geophysical and Geochemical Exploration, CAGS, Langfang 065000, China
2. National Center for Geological Exploration Technology, Langfang 065000, China
3. Electromagnetic Detection Technology Key Laboratory of Nature Resources, Langfang 065000, China
全文: PDF(2340 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

大地电磁测深实际测量中,视电阻率的静位移是常见现象,有时会遇到连片静位移的区域,能否对其正确识别与校正将直接影响到反演解释结果的准确度。针对出现连续静位移区的大地电磁测深剖面,相邻测点间同极化模式的视电阻率曲线可参考性较低。本文基于岩性分析,通过实验,初步总结出一套针对连片区的静态位移校正方法——首枝频点统计求平均法。本方法先对研究区浅地表同一地层分布区的畸变测点进行统计,再统计每个测点(相同极化模式)前三个频点的平均值,将这些畸变点的平均值再进一步做平均,得到的值将会作为相应畸变点视电阻率曲线首枝(第二个频点)的预置位置。该方法不改变测点的曲线形态,只改变测点曲线首枝位置,使其达到统计出的预置位置。将该方法应用在扎鲁特地区大地电磁测深实测资料的静校正实验中,取得了较好的应用效果。这也说明,大地电磁测深的剖面连片静位移区资料处理,在没有大量的测井和物性约束条件下,使用首枝频点统计求平均法具有一定的合理性和参考性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吕琴音
张小博
仇根根
王刚
关键词 大地电磁测深静态位移静校正反演    
Abstract

In practical measurement of magnetotelluric sounding, the static displacement of apparent resistivity is a common phenomenon. Whether it can be identified and corrected efficiently will affect the accuracy of inversion and interpretation directly, especially on condition of regional static displacements. In a magnetotelluric profile with continuous static displacements, the apparent resistivity curves with the same polarization model of adjacent measurement points are less referable to each other, and how to make reasonable static displacement correction is the key to obtaining reliable inversion results. Based on lithologic analysis and experimental tests, a new static displacement correction method for large-point-distance condition is preliminarily summarized in this paper, which is named "the statistical averaging method of frequency points in first branch". In this method, statistical analysis is firstly conducted on the distortion measurement points in the study region, then the first three frequency points of each measurement point (same polarization mode) are averaged, and finally the gained averages of all the distortion measurement points are further averaged to obtain a target value, which is preset to the second frequency point of the first branch of the corresponding apparent resistivity curves with distortion. This method doesn't change the shape, but only changes the position of the first branch of the measuring point curve, so as to reach the preset position. Taking the measured data of magnetotelluric sounding in Zalut area as an experiment, the authors carried out the static correction test, and obtained a good application effect, which also indicates that the method is reasonable and applicable in the magnetotelluric sections with continuous static displacement under the condition of insufficient logging and physical property constraints.

Key wordsmagnetotelluric sounding    static displacement    static correction    inversion
收稿日期: 2020-01-19      出版日期: 2020-06-24
:  P631  
基金资助:公益性基础地质调查二级项目(DD20190030);基本科研业务费专项资金项目(AS2017Y05);基本科研业务费专项资金项目(ASJ2016J12);基本科研业务费专项资金项目(JYYWF20180912)
通讯作者: 张小博
作者简介: 吕琴音(1988-),女,主要从事电磁法方法技术研究工作。Email: lvqinyin@igge.cn
引用本文:   
吕琴音, 张小博, 仇根根, 王刚. 大地电磁测深首枝频点统计求平均法在连片静位移区的校正实验研究[J]. 物探与化探, 2020, 44(3): 677-684.
Qin-Yin LYU, Xiao-Bo ZHANG, Gen-Gen QIU, Gang WANG. An experimental study of the correction of the statistical averaging method of frequency points in the first branch of magnetotelluric sounding in the static displacement zone. Geophysical and Geochemical Exploration, 2020, 44(3): 677-684.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2020.0059      或      https://www.wutanyuhuatan.com/CN/Y2020/V44/I3/677
Fig.1  MT测点分布示意
Fig.2  MT剖面二维偏离度变化特征
Fig.3  构造主轴坐标系x-y和观测坐标系x'-y'
Fig.4  320 Hz频点的ρxyρyx沿剖面变化曲线
Fig.5  测点曲线首枝电阻率统计值散点分布
Fig.6  265 Hz频点ρyx相邻测点拟合校正与首枝频点统计求平均法校正对比
Fig.7  MT剖面TM极化模式频率—视电阻率拟断面对比
Fig.8  MT剖面二维反演断面对比
[1] 王家映. 关于大地电磁的静校正问题[J]. 地质科技情报, 1992(1):69-76.
[1] Wang J Y. Problem about static correction in magnetotellurics[J]. Geological Science and Technology Information, 1992(1):69-76.
[2] 唐路特. 大地电磁数据静位移影响及校正方法研究[D]. 北京:中国地质大学( 北京), 2012.
[2] Tang L T. The study of the impact on the magnetotelluric data from the static shift and the correction method[D]. Beijing:China University of Geosciences( Beijing), 2012.
[3] 强建科, 阮百尧, 熊彬. 浅部不均匀体对目标体电阻率异常影响的研究[J]. 地球物理学报, 2004,47(3):542-548.
[3] Qiang J K, Ruan B Y, Xiong B. A study on effects of shallow inhomgeneous body on object resistivity anomaly[J]. Chinese Journal of Geophysics, 2004,47(3):542-548.
[4] 刘桂梅, 马为, 刘俊昌, 等. 大地电磁测深静态效应空间域拓扑处理技术研究[J]. 物探与化探, 2018,42(1):118-126.
[4] Liu G M, Ma W, Liu J C, et al. Spatial domain topological processing technique for studying static effect in magnetotelluric sounding[J]. Geophysical and Geochemical Exploration, 2018,42(1):118-126.
[5] Louis C. Basic theory of the magneto-telluric method of geophysical prospecting[J]. Geophysics, 1953,18(3):605-635.
[6] 程少华. 大地电磁静态效应校正方法对比研究[D]. 西安:长安大学, 2012.
[6] Cheng S H. Contrastive analysis of different static shift correction methods in Megnetotelluric[D]. Xi'an : Chang'an University, 2012.
[7] 张翔, 胡文宝, 严良俊, 等. 大地电磁测深中的地形影响与校正[J]. 江汉石油学院学报, 1999(1):6-50,5.
[7] Zhang X, Hu W B, Yan L J, et al. Terrain influence and correction in mt sounding[J]. Jourmal of Jianghan Petroleum Institute, 1999(1):6-50,5.
[8] 熊彬, 罗天涯, 蔡红柱, 等. 起伏地形大地电磁二维反演[J]. 物探与化探, 2016,40(3):578-586.
[8] Xiong B, Luo T Y, Cai H Z, et al. An analysis of Google Earth elevation data accuracy and its application to seismic exploration[J]. Geophysical and Geochemical Exploration, 2016,40(3):578-586.
[9] Swift C M. A magnetotelluric investigation of an electrical conductivity anomaly in the southwestern United States[D]. Cambridge City: Massachusetts Institute of Technology, 1967.
[10] 蔡军涛. 大地电磁三维畸变特征及校正新技术的应用研究[D]. 北京:中国地震局地质研究所, 2009.
[10] Cai J T. The feature of three-dimensional distortin in MT and research of new correction methods[D]. Beijing:Institute of Geology,China Seismological Bureau, 2009.
[11] 陈小斌, 蔡军涛, 王立凤, 等. 大地电磁资料精细处理和二维反演解释技术研究(四)——阻抗张量分解的多测点—多频点统计成像分析[J]. 地球物理学报, 2014,57(6):1946-1957.
[11] Chen X B, Cai J T, Wang L F, et al. Refined techniques for magnetotelluric data processing and two-dimensional inversion(IV):Statistical image method based on multi-site,multi-frequency tensor decomposition[J]. Chinese Journal of Geophysics, 2014,57(6):1946-1957.
[1] 冯旭亮, 魏泽坤. 基于界面反演增强的位场边缘识别方法[J]. 物探与化探, 2022, 46(1): 130-140.
[2] 陈大磊, 王润生, 贺春艳, 王珣, 尹召凯, 于嘉宾. 综合地球物理探测在深部空间结构中的应用——以胶东金矿集区为例[J]. 物探与化探, 2022, 46(1): 70-77.
[3] 黄远生, 王彦国, 罗潇. 基于归一化磁源强度垂向差分的磁源参数快速估计方法[J]. 物探与化探, 2021, 45(6): 1588-1596.
[4] 何可, 郭明, 胡章荣, 易国财, 王仕兴. 半航空瞬变电磁L1范数自适应正则化反演[J]. 物探与化探, 2021, 45(5): 1338-1346.
[5] 郭培虹, 冯治汉, 王万银, 唐小平, 刘生荣. 北秦岭华阳川地区重磁三维反演及岩浆岩特征研究[J]. 物探与化探, 2021, 45(5): 1217-1225.
[6] 刘鸿洲, 王孟华, 张浩, 彭玲丽, 李雯, 张杰, 赵智鹏, 伍泽荆. 基于分频构形反演方法的河道砂精准预测——以华北冀中探区赵皇庄地区为例[J]. 物探与化探, 2021, 45(5): 1311-1319.
[7] 邢涛, 袁伟, 李建慧. 回线源瞬变电磁法的一维Occam反演[J]. 物探与化探, 2021, 45(5): 1320-1328.
[8] 张鹏飞, 张世晖. 西湖凹陷平湖组砂泥岩岩性神经网络地震预测[J]. 物探与化探, 2021, 45(4): 1014-1020.
[9] 田郁, 乐彪. 复杂异常体模型下的三维MT倾子正演模拟[J]. 物探与化探, 2021, 45(4): 1021-1029.
[10] 李瑞友, 张淮清, 吴昭. 基于在线惯序极限学习机的瞬变电磁非线性反演[J]. 物探与化探, 2021, 45(4): 1048-1054.
[11] 刘辉, 李静, 曾昭发, 王天琪. 基于贝叶斯理论面波频散曲线随机反演[J]. 物探与化探, 2021, 45(4): 951-960.
[12] 马良涛, 范廷恩, 许学良, 董建华, 蔡文涛. 油气检测多技术联合在B油田的应用研究[J]. 物探与化探, 2021, 45(4): 961-969.
[13] 段莹, 张高成, 谭雅丽. 泌阳凹陷高陡构造带地震成像[J]. 物探与化探, 2021, 45(4): 981-989.
[14] 李凡, 周明, 李开天, 鲁恺, 李振宇. 单斜地形情况下的磁共振测深方法反演研究[J]. 物探与化探, 2021, 45(3): 712-725.
[15] 李志强, 孙洋, 谭捍东, 张承客. 带地形的ZTEM倾子资料三维正反演研究[J]. 物探与化探, 2021, 45(3): 758-767.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com