Please wait a minute...
E-mail Alert Rss
 
物探与化探  2021, Vol. 45 Issue (3): 758-767    DOI: 10.11720/wtyht.2021.1349
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
带地形的ZTEM倾子资料三维正反演研究
李志强1(), 孙洋1, 谭捍东2, 张承客1
1.江西省交通科学研究院,江西 南昌 330200
2.中国地质大学(北京) 地球物理与信息技术学院,北京 100083
3D forward modeling and inversion of ZTEM tipper data including surface topography
LI Zhi-Qiang1(), SUN Yang1, TAN Han-Dong2, ZHANG Cheng-Ke1
1. Jiangxi Transportation Institute,Nanchang 330200, China
2. School of Geophysics and Information Technology, China University of Geosciences(Beijing), Beijing 100083, China
全文: PDF(3611 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

Z轴倾子电磁法(ZTEM)是一种新型频率域航空天然场源电磁法,该方法采用倾子作为研究参数,可用于起伏地形下的大规模地质勘探。本文在对TEM三维有限差分正演和数据空间OCCAM反演算法研究的基础上,考虑地形起伏的影响,研究了带地形的频率域三维ZTEM正反演算法。首先,对起伏地表下ZTEM正演算法的准确性进行了验证,计算和分析了纯地形的ZTEM三维异常响应特征。其次,通过对山峰和山谷地形下低阻棱柱体合成算例的反演分析,表明带地形的ZTEM数据空间OCCAM反演算法能够获得比较接近真实导电性结构的地电模型,尤其对地下目标体的横向边界具有理想的约束效果。最后,与不带地形的ZTEM反演结果对比,验证了所开发的带地形ZTEM倾子资料反演算法的有效性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李志强
孙洋
谭捍东
张承客
关键词 ZTEM倾子起伏地形三维正反演数据空间法航空电磁    
Abstract

ZTEM is a new-type frequency-domain airborne electromagnetic system which measures the magnetic fields that result from natural source. Tipper is adopted as a research parameter that relates the vertical magnetic field at the observation point to the horizontal fields at a ground based reference station, which can be used to perform large-scale structural exploration with topography. Based on the 3D finite-difference forward modeling and data-space OCCAM inversion of ZTEM, the authors have developed a frequency-domain 3D forward and inversion algorithm for ZTEM tipper data including surface tomography. At first, the forward code is verified for its correctness and applied to calculate and analyze the characteristics of 3D ZTEM abnormal response generated from undulate tomography. Then, the synthetic conductive models of 3D ZTEM inversion results including peak and valley terrain show that the algorithm can get the inversion models which are close to the underground real conductive structure; especially, it has an ideal constraint effect on the horizontal boundary of the underground object. At last, the results of synthetic example are compared with the results from 3D ZTEM inversion with no tomography implications to demonstrate the validity of the data-space OCCAM approach for inverting tipper data of ZTEM.

Key wordsZTEM tipper    undulate topography    3D forward modeling and inversion    data-space method    airborne electromagnetic survey
收稿日期: 2020-07-14      修回日期: 2021-01-19      出版日期: 2021-06-20
ZTFLH:  P631  
基金资助:国家自然科学基金项目(41830429);江西省青年科学基金项目(20181BAB216028);江西省交通运输厅科技项目(2018H0042)
作者简介: 李志强(1990-),男,工程师,硕士,毕业于中国地质大学(北京),主要从事工程物探及数值模拟算法研究工作。Email: 657419089@qq.com
引用本文:   
李志强, 孙洋, 谭捍东, 张承客. 带地形的ZTEM倾子资料三维正反演研究[J]. 物探与化探, 2021, 45(3): 758-767.
LI Zhi-Qiang, SUN Yang, TAN Han-Dong, ZHANG Cheng-Ke. 3D forward modeling and inversion of ZTEM tipper data including surface topography. Geophysical and Geochemical Exploration, 2021, 45(3): 758-767.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2021.1349      或      https://www.wutanyuhuatan.com/CN/Y2021/V45/I3/758
Fig.1  编号为(i,j,k)的网格单元
Fig.2  ZTEM正演模型
Fig.3  二维山峰纯地形模型倾子响应的二维、三维计算结果对比
Fig.4  数据空间OCCAM反演流程
Fig.5  山峰地形模型在xy方向的模型视图(a)、xz方向的模型视图(b)及xyz方向的模型视图(c)
Fig.6  频率在50 Hz时山峰模型的ZTEM响应TzxTzy平面分布(白色框为模型的轮廓)
Fig.7  频率在50 Hz时山谷模型的ZTEM响应TzxTzy平面分布(白色框为模型的轮廓)
Fig.8  低阻棱柱体模型示意(山峰地形)
Fig.9  低阻体模型ZTEM倾子响应数据不带地形与带地形的三维反演结果(山峰地形条件)
第一行—5个频率的水平地形ZTEM倾子反演结果;第二行—5个频率的带地形ZTEM倾子反演结果;第三行—8个频率的带地形ZTEM倾子反演结果;第一列—深为500 m的水平切片;第二列—x=0时沿y方向的垂直切片;第三列—y=0时沿x方向的垂直切片;黑色虚线—棱柱体的边界
Fig.10  低阻棱柱体模型示意(山谷地形条件)
Fig.11  低阻体模型ZTEM倾子响应数据不带地形与带地形的三维反演结果(山谷地形条件)
第一行—水平地形ZTEM倾子反演结果;第二行—带地形ZTEM倾子反演结果;第一列—深为650 m的水平切片;第二列—x=0时沿y方向的垂直切片;第三列—y=0时沿x方向的垂直切片;黑色虚线—棱柱体的边界
[1] Ward S H. AFMAG—Airborne and ground[J]. Geophysics, 1959, 24(4):761-787.
doi: 10.1190/1.1438657
[2] Ward S H, O’Donnell J, Rivera R, et al. AFMAG-application and limitation[J]. Geophysics, 1966, 31(3):576-605.
doi: 10.1190/1.1439795
[3] Lo B, Zang M. Numerical modeling of ZTEM (airborne AFMAG) responses to guide exploration strategies[C]// 78th Annual Internat Mtg.SEG.,Expanded Abstracts, 2008:1098-1102.
[4] Labson V F, Becker A, Morrison H F, et al. Geophysical exploration with audiofrequency natural magnetic fields[J]. Geophysics, 1985, 50(4):656-664.
doi: 10.1190/1.1441940
[5] Holtham E, Oldenburg D W. Three-dimensional inversion of ZTEM data[J]. Geophys. J. Int., 2010, 182:168-182.
[6] Holtham E, Oldenburg D W. Three-dimensional inversion of MT and ZTEM data[C]// 80th Annual Internat Mtg.SEG.,Expanded Abstracts, 2010b:655-659.
[7] Holtham E, Oldenburg D W. Large-scale inversion of ZTEM data[J]. Geophysics, 2012, 77(4):37-45.
[8] Sattel D, Witherly K. The modeling of ZTEM data with 2D and 3D algorithms[C]// 82th Annual International Meeting. SEG.,Expanded Abstracts, 2012:1-5.
[9] Wang T, Tan H D, Li Z Q, et al. 3D finite-difference modeling algorithm and anomaly features of ZTEM[J]. Applied Geophysics, 2016, 13(3):553-560.
doi: 10.1007/s11770-016-0566-9
[10] 赵丛, 朱琳, 李怀渊, 等. 航空和地面天然场电磁法联合开展深部矿产资源勘探[J]. 物探与化探, 2016, 40(2):333-341.
[10] Zhao C, Zhu L, Li H Y, et al. Deep mineral exploration by airborne and ground natural field electromagnetic methods[J]. Geophysical and Geochemical Exploration, 2016, 40(2):333-341.
[11] 李志强, 荣耀, 谭捍东. ZTEM三维数据空间OCCAM反演研究[J]. 地球物理学进展, 2018, 33(4):1526-1532.
[11] Li Z Q, Rong Y, Tan H D. Three-dimensional data space OCCAM inversion of ZTEM[J]. Progress in Geophysics, 2018, 33(4):1526-1532.
[12] 王言章, 石佳晴, 时洪宇. 航空ZTEM磁传感器调理电路低噪声优化设计[J]. 仪器仪表学报, 2018, 39(3):187-194.
[12] Wang Y Z, Shi J Q, Shi H Y. Low noise optimization design of conditioning circuit for ZTEM airborne magnetic sensor[J]. Chinese Journal of Scientific Instrument, 2018, 39(3):187-194.
[13] 许智博, 谭捍东. ZTEM二维非线性共轭梯度反演研究[J]. 物探与化探, 2019, 43(2):393-400.
[13] Xu Z B, Tan H D. Two-dimensional nonlinear conjugate inversion of ZTEM[J]. Geophysical and Geochemical Exploration, 2019, 43(2):393-400.
[14] Sasaki Y, Yi M J, Choi J. 3D inversion of ZTEM data for uranium exploration[C]// ASEG Extended Abstracts, 2013:1-4.
[15] Legault J M, Wannamaker P E. Two-dimensional joint inversion of ZTEM and MT plane-wave EM data for near surface applications[C]// SAGEEP,Expanded Abstracts, 2014:18-23.
[16] Sattel D, Witherly K. The 3D joint inversion of MT and ZTEM data[C]. ASEG Extended Abstracts, 2015: 1-4.
[17] 张博, 殷长春, 刘云鹤, 等. 起伏地表频域/时域航空电磁系统三维正演模拟研究[J]. 地球物理学报, 2016, 59(4):1506-1520.
[17] Zhang B, Yin C C, Liu Y H, et al. 3D modeling on topographic effect for frequency-/time-domain airborne EM systems[J]. Chinese Journal of Geophysics, 2016, 59(4):1506-1520.
[18] 王卫平, 曾昭发, 李静, 等. 频率域航空电磁法地形影响和校正方法[J]. 吉林大学学报:地球科学版, 2015, 45(3):941-951.
[18] Wang W P, Zeng Z F, Li J, et al. Topographic effects and correction for frequency-airborne electromagnetic method[J]. Journal of Jilin University:Earth Science Edition, 2015, 45(3):941-951.
[19] 李文奔. 频率域航空电磁法三维正反演研究[D]. 吉林:吉林大学, 2016.
[19] Li W B. Three-dimensional forward modeling and inversion of frequency-domain airborne electromagnetic data[D]. Jilin:Jilin University, 2016.
[20] 董浩, 魏文博, 叶高峰, 等. 基于有限差分正演的带地形三维大地电磁反演方法[J]. 地球物理学报, 2014, 57(3):939-952.
[20] Dong H, Wei W B, Ye G F, et al. Study of Three-dimensional magnetotelluric inversion including surface topography based on Finite-difference method[J]. Chinese Journal of Geophysics, 2014, 57(3):939-952.
[21] 熊彬, 罗天涯, 蔡红柱, 等. 起伏地形大地电磁二维反演[J]. 物探与化探, 2016, 40(3):587-593.
[21] Xiong B, Luo T Y, Cai H Z, et al. Two-dimensional magnetotelluric inversion of topography[J]. Geophysical and Geochemical Exploration, 2016, 40(3):587-593.
[22] 谭捍东, 魏文博, 邓明, 等. 大地电磁法张量阻抗通用计算公式[J]. 石油地球物理勘探, 2004, 39(1):114-116.
[22] Tan H D, Wei W B, Deng M, et al. General use formula in MT tensor impedance[J]. Oil Geophysical Prospecting, 2004, 39(1):114-116.
[23] 谭捍东, 余钦范, Booker J, 等. 大地电磁法三维交错采样有限差分数值模拟[J]. 地球物理学报, 2003a, 46(5):705-711.
[23] Tan H D, Yu Q F, Booker J, et al. Magnetotelluric three-dimensional modeling using the staggered-grid finite difference method[J]. Chinese Journal of Geophysics, 2003a, 46(5):705-711.
[24] 谭捍东, 余钦范, John Booker, 等. 大地电磁法三维快速松弛反演[J]. 地球物理学报, 2003b, 46(6):850-855.
[24] Tan H D, Yu Q F, Booker J, et al. Three-dimensional rapid relaxation inversion for the magnetotelluric method[J]. Chinese Journal of Geophysics, 2003b, 46(6):850-855.
[25] Siripunvaraporn W, Egbert G. An efficient data-subspace inversion method for 2-D magnetotelluric data[J]. Geophysics, 2000, 65:791-803.
doi: 10.1190/1.1444778
[26] Siripunvaraporn W, Egbert G, Lenbury Y, et al. Three-dimensional magnetotelluric inversion: data-space method[J]. Physics of the Earth & Planetary Interiors, 2005, 150(1-3):3-14.
[1] 黄威, 肖都, 贲放, 李军峰, 李飞, 胥值礼. 航空电磁时间域数据工频干扰研究与去除[J]. 物探与化探, 2023, 47(5): 1281-1287.
[2] 单希鹏, 谢汝宽, 余学中, 梁盛军, 李健. 频率域航空电磁法在雄安新区浅层(微)咸淡水调查中的应用[J]. 物探与化探, 2023, 47(2): 504-511.
[3] 饶荣富, 苏本玉. 直流电阻率法与工作面透明化[J]. 物探与化探, 2022, 46(3): 563-569.
[4] 何帅, 杨炳南, 阮帅, 李永刚, 韩姚飞, 朱大伟. 三维AMT正反演技术对贵州马坪含金刚石岩体探测的精细解释[J]. 物探与化探, 2022, 46(3): 618-627.
[5] 孙思源, 余学中, 谢汝宽, 何怡原, 单希鹏, 李诗珺. 航空电磁技术在冻土调查中的探测能力分析[J]. 物探与化探, 2022, 46(1): 104-113.
[6] 张宇哲, 孟麟, 王智. 基于Gmsh的起伏地形下井—地直流电法正演模拟[J]. 物探与化探, 2022, 46(1): 182-190.
[7] 任运通, 李貅, 齐彦福, 曹华科. 基于MPI+OpenMP的时间域航空电磁快速正演算法[J]. 物探与化探, 2020, 44(2): 290-299.
[8] 贲放, 黄威, 路宁, 韩飞, 郑红闪, 丁志强, 李军峰. 时间域航空电磁的天电噪声去除研究[J]. 物探与化探, 2020, 44(2): 388-393.
[9] 黄威, 贲放, 吴珊, 孙思源, 廖桂香, 西永在. 正交多项式法在航空电磁运动噪声去除中的应用[J]. 物探与化探, 2019, 43(4): 892-898.
[10] 许智博, 谭捍东. ZTEM二维非线性共轭梯度反演研究[J]. 物探与化探, 2019, 43(2): 393-400.
[11] 何畏, 吴文鹂, 李建华, 林品荣, 梁萌, 顾观文, 冯斌. 一种电磁法三维数值模拟的建模与网格剖分方法[J]. 物探与化探, 2018, 42(6): 1272-1279.
[12] 谭林, 周道卿, 宁墨奂, 秦溱. 频率域航空电磁法人机交互式二维正演研究[J]. 物探与化探, 2018, 42(4): 798-803.
[13] 相丽娜, 王志宏, 孙栋华, 伍显红, 魏永强. 航电在高山区找矿快速突破中的应用[J]. 物探与化探, 2018, 42(2): 225-233.
[14] 孙栋华, 李怀渊, 江民忠, 王培建. 利用时间域航空电磁资料再论华北地台北界的划分[J]. 物探与化探, 2017, 41(3): 478-483.
[15] 韩雪, 朱伟国. 起伏地形条件下电阻率法三维反演[J]. 物探与化探, 2017, 41(1): 136-140.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com