Please wait a minute...
E-mail Alert Rss
 
物探与化探  2019, Vol. 43 Issue (1): 90-99    DOI: 10.11720/wtyht.2019.1183
     方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
改进型粒子群算法及其在GPR全波形反演中的应用
戴前伟1,2, 陈威1(), 张彬1,2
1. 中南大学 地球科学与信息物理学院,湖南 长沙 410083
2. 中南大学 有色金属成矿预测与地质环境监测教育部重点实验室,湖南 长沙 410083
Improved particle swarm optimization and its application to full-waveform inversion of GPR
Qian-Wei DAI1,2, Wei CHEN1(), Bin ZHANG1,2
1. School of Geosciences and Info-Physics,Central South University,Changsha 410083,China
2. Key Laboratory of Metallogenic Prediction of Nonferrous Metal and Geological Environment Monitoring,Ministry of Education,Central South University,Changsha 410083,China
全文: PDF(1524 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

探地雷达作为高精度的物探工作方法,其主要目的是反演解释地下结构的物性参数。笔者提出社会学习型粒子群优化反演方法,它以信号均方误差为目标函数,用时域有限差分方法作正演,并且针对反射波信号较弱、反演效果不佳的情况设计了对正演结果进行振幅补偿的方法,对反射波的振幅进行增益,以提高反演精度。通过与经典粒子群优化反演方法的结果对比,说明了该算法在准确度以及效率方面都有相当大的提高。经过分析多层介质仿真数据的一维反演结果,说明了该算法对多参数反演的有效性和良好的抗噪性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
戴前伟
陈威
张彬
关键词 粒子群优化探地雷达反演振幅补偿    
Abstract

Ground penetrating radar (GPR) is a high-precision geophysical exploration method whose main purpose is to invert the physical properties of underground structures.In this paper,an improved particle swarm optimization (PSO) is used to solve GPR inverse problem.The inversion takes the signal mean square error as the objective function and uses the finite-difference time-domain method to do forward modeling.In addition,the inversion accuracy is improved by the amplitude compensation of the forward result.Compared with the results based on classical particle swarm optimization inversion method,the algorithm shows considerable improvement in accuracy and efficiency.An analysis of the one-dimensional inversion results of multi-layer simulation data shows that the inversion method is effective for multi-parameter inversion and has good noise immunity.

Key wordsparticle swarm optimization    ground penetrating radar    inversion    amplitude compensation
收稿日期: 2018-05-07      出版日期: 2019-02-20
:  P631  
基金资助:国家自然科学基金项目(41704128);国家自然科学基金项目(41874148);中国博士后科学基金项目(2018M632992);湖南省自然科学基金项目(2018JJ3636)
通讯作者: 陈威
作者简介: 戴前伟(1968-),男,工学博士、教授,博士生导师,地球探测与信息技术专业,长期从事电磁法勘探理论及应用和工程、环境及灾害地球物理勘探的基础理论及实践的教学和科研工作。
引用本文:   
戴前伟, 陈威, 张彬. 改进型粒子群算法及其在GPR全波形反演中的应用[J]. 物探与化探, 2019, 43(1): 90-99.
Qian-Wei DAI, Wei CHEN, Bin ZHANG. Improved particle swarm optimization and its application to full-waveform inversion of GPR. Geophysical and Geochemical Exploration, 2019, 43(1): 90-99.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2019.1183      或      https://www.wutanyuhuatan.com/CN/Y2019/V43/I1/90
Fig.1  改进的PSO算法流程
Fig.2  粒子重排和行为学习示意
Fig.3  一维层状模型示意
Fig. 4  一维层状模型正演波形
a—增益前正演波形;b—增益后正演波形
模型 层序号 层厚度/m 相对介电常数 电导率/(mS·m-1)
1 0.25 6 0.01
模型1 2 0.25 12 0.02
3 无限 6 0.05
1 0.25 17 0.01
模型2 2 0.25 12 0.02
3 无限 7 0.05
1 0.25 6 0.01
模型3 2 0.25 11 0.02
3 无限 16 0.05
Table 1  理论模型参数
Fig. 5  模型1反演结果对比
a—深度及介电常数反演结果综合对比;b—SLPSO理想数据反演结果;c—PSO理想数据反演结果;d—SLPSO加躁数据反演结果;e—PSO加躁数据反演结果
Fig. 6  模型2反演结果对比
a—深度及介电常数反演结果综合对比;b—SLPSO理想数据反演结果;c—PSO理想数据反演结果;d—SLPSO加躁数据反演结果;e—PSO加躁数据反演结果
Fig. 7  模型3反演结果对比
a—深度及介电常数反演结果综合对比;b—SLPSO理想数据反演结果;c—PSO理想数据反演结果;d—SLPSO加躁数据反演结果;e—PSO加躁数据反演结果
迭代步数 SLPSO适应值 时间/s PSO适应值 时间/s
10 5385 11.25 4983 11.30
20 4700 22.50 3371 22.60
30 2741 33.75 3054 33.90
40 2741 45.00 2892 45.20
50 256 56.25 2784 56.50
60 256 67.50 2762 67.80
70 77 78.75 2580 79.10
80 32 90.00 77 90.40
90 10 101.25 63 101.70
Table 2  模型1反演迭代效率对比
Fig. 8  模型1反演振幅补偿效果对比
a—未增益数据反演结果;b—增益数据反演结果;c—未增益数据反演参数综合对比;d—增益数据反演参数综合对比
[1] Neal A . Ground-penetrating radar and its use in sedimentology: principles,problems and progress[J]. Earth-Science Reviews, 2004,66(3/4):261-330.
doi: 10.1016/j.earscirev.2004.01.004
[2] 李大心 . 探地雷达方法与应用[M]. 北京: 地质出版社, 1994.
[2] Li D X. Ground penetrating radar method and application[M]. Beijing: Geological Publishing House, 1994.
[3] 曾昭发, 刘四新, 冯晅 . 探地雷达原理与应用[M]. 北京: 电子工业出版社, 2010.
[3] Zeng Z F, Liu S X, Feng X. Principle and application of ground penetrating radar[M]. Beijing: Publishing House of Electronics Industry, 2010.
[4] 易远元, 王家映 . 地球物理资料非线性反演方法讲座(十)——粒子群反演方法[J]. 工程地球物理学报, 2009,6(4):385-389.
doi: 10.3969/j.issn.1672-7940.2009.04.001
[4] Yi Y Y, Wang J Y . Lecture on nonlinear inversion methods of geophysical data(10):particle swarm inversion method[J]. Chinese Journal of Engineering Geophysics, 2009,6(4):385-389.
[5] 王家映 . 地球物理反演理论[M]. 武汉: 中国地质大学出版社, 2002: 1-3.
[5] Wang J Y. Geophysical inversion theory[M]. Wuhan: China University of Geosciences Press, 2002: 1-3.
[6] 姚姚 . 地球物理反演基本理论与应用方法[M]. 武汉: 中国地质大学出版社, 2002.
[6] Yao Y. Basic theory and application method of geophysical inversion[M]. Wuhan: China University of Geosciences Press, 2002.
[7] Kennedy J, Eberhart R . Particle swarm optimization[J].Proceedings of IEEE International Conference on Neural Networks,1995(4):1942-1948.
[8] Jun S, Wei F, Wenbo X . A quantum-behaved particle swarm optimization with diversity-guided mutation for the design of two-dimensional IIR digital filters[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2010,57(2):141-145.
doi: 10.1109/TCSII.2009.2038514
[9] Hao G . Multilevel thresholding for image segmentation through an improved quantum-behaved particle swarm algorithm[J]. IEEE Transactions on Instrumentation and Measurement, 2010,59(4):934-946.
doi: 10.1109/TIM.2009.2030931
[10] 朴海国, 王志新, 张华强 . 基于合作粒子群算法的PID神经网络非线性控制系统[J]. 控制理论与应用, 2009,26(12):1317-1324.
doi: 10.7641/j.issn.1000-8152.2009.12.ccta080998
[10] Piao H G, Wang Z X, Zhang H Q . Nonlinear control system of PID neural network based on cooperated particle swarm optimization (PSO)[J]. Control Theory & Applications, 2009,26(12):1317-1324.
[11] 付荣, 居鹤华 . 基于粒子群优化的时间最优机械臂轨迹规划算法[J]. 信息与控制, 2011,40(6):802-808.
doi: 10.3724/SP.J.1219.2011.00802
[11] Fu R, Ju H H . Time-optimal trajectory planning algorithm for manipulator based on PSO[J]. Information and Contral, 2011,40(6):802-808.
[12] Huang G, Li D H, Yang J. A Research on particle swarm optimization and its application in robot manipulators [C]//NJ,USA:2008 IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application, 2008: 377-381.
[13] 刘波 . 粒子群优化算法及其在机电设备中的应用研究[D]. 太原:中北大学, 2011.
[13] Liu B . Particle swarm optimization algorithm and its application in electromechanical equipment[D]. Taiyuan:North University of China, 2011.
[14] 张旭辉, 张礼勇, 梁宵 . 基于改进粒子群优化算法的电力线通信多径传输模型参数辨识[J]. 电网技术, 2009,33(1):75-79.
doi: 10.1016/j.apm.2007.10.019
[14] Zhang X H, Zhang L Y, Liang X . Parameter identification of Multi-Path transmission model for power line communication based on improved particle swarm optimization[J]. Power System Technology, 2009,33(1):75-79.
[15] 杨文东, 张强勇, 李术才 , 等. 粒子群算法在时效变形参数反演中的应用[J]. 中南大学学报:自然科学版, 2013,44(1):282-288.
[15] Yang W D, Zhang Q Y, Li S C , et al. Application of particle swarm optimization in time-dependent parameters inversion[J]. Journal of Central South University(Science and Technology), 2013,44(1):282-288.
[16] 张波, 陈睿君, 路璐 . 粒子群算法在投资组合中的应用[J].系统工程,2007(8):108-110.
doi: 10.3969/j.issn.1001-4098.2007.08.021
[16] Zhang B, Chen R J, Lu L . Application of the particle swarm optimization in the Portfolio Selection[J].Systems Engineering, 2007(8):108-110.
[17] 朱肖雄, 崔益安, 李溪阳 , 等. 基于粒子群优化的自然电场数据反演[J]. 中南大学学报:自然科学版, 2015,46(2):579-585.
[17] Zhu X X, Cui Y A, Li X Y , et al. Inversion of self-potential anomalies based on particle swarm optimization[J]. Journal of Central South University (Science and Technology), 2015,46(2):579-585.
[18] 张倩, 王玲, 江沸菠 . 电阻率层析成像的二维改进粒子群优化算法反演[J]. 物探与化探, 2015,39(5):1047-1052.
doi: 10.11720/wtyht.2015.5.27
[18] Zhang Q, Wang L, Jiang F B . 2-D improved particle swarm optimization algorithm for electrical resistance tomography inversion[J]. Geophysical and Geochemical Exploration, 2015,39(5):1047-1052.
[19] 张大莲, 刘天佑, 陈石羡 , 等. 粒子群算法在磁测资料井地联合反演中的应用[J]. 物探与化探, 2009,33(5):571-575,591.
[19] Zhang D L, Liu T Y, Chen S X , et al. The application of PSO to joint inversion of survey and borehole magnatic data[J]. Geophysical and Geochemical Exploration, 2009,33(5):571-575,591.
[20] Fernando A, Santos M . Inversion of self-potential of idealized bodies' anomalies using particle swarm optimization[J]. Computers & Geosciences, 2010,36:1185-1190.
doi: 10.1016/j.cageo.2010.01.011
[21] Zheng S, Zhang A X, Yue S C , et al. Ground penetrating radar inversion algorithm based on improved particle swarm optimization[J]. Journal of Electronics & Information Technology, 2014,36(11):2717-2722.
[22] 方宏远, 林皋, 张蓓 , 等. 基于改进粒子群算法的路面厚度反演分析[J]. 中外公路, 2012,32(4):81-84.
doi: 10.3969/j.issn.1671-2579.2012.04.022
[22] Fang H Y, Lin G, Zhang B , et al. Analysis of pavement thickness inversion based on improved particle swarm optimization algorithm[J]. Journal of China & Foreign Highway, 2012,32(4):81-84.
[23] Cheng R, Jin Y C . A social learning particle swarm optimization algorithm for scalable optimization[J]. Information Sciences, 2015,291(6):43-60.
doi: 10.1016/j.ins.2014.08.039
[24] 李丽, 牛奔 . 粒子群优化算法[M]. 北京: 冶金工业出版社, 2010.
[24] Li L, Niu B. Particle swarm optimization algorithm[M]. Beijing: Metallurgical Industry Press, 2010.
[25] 杨维, 李歧强 . 粒子群优化算法综述[J].中国工程科学,2004(5):87-94.
doi: 10.3969/j.issn.1009-1742.2004.05.018
[25] Yang W, Li Q Q . Summary of particle swarm optimization[J].China Engineering Science, 2004(5):87-94.
[26] 葛德彪, 魏兵 . 电磁波时域计算方法[M]. 西安: 西安电子科技大学出版社, 2014.
[26] Ge D B, Wei B. Time domain calculation method of electromagnetic wave[M]. Xi'an: Xi'an University of Electronic Science and Technology Press, 2014.
[27] Elsherbeni A Z, Demir V. The finite difference time domain method for electromagnetics with MATLAB simulations [M].Scitech Publishing, 2009.
[28] Dai Q W, Feng D S, He J S . Finite difference time domain method forward simulation of complex geoelectricity ground penetrating radar model[J].Journal of Central South University of Technology (English Edition),2005(4):478-482.
doi: 10.1007/s11771-005-0186-7
[29] 冯德山 . 地质雷达二维时域有限差分正演[D]. 长沙:中南大学, 2004.
[29] Feng D S . Two-dimensional time domain finite difference forward modeling of geological radar[D]. Changsha:Central South University, 2004.
[30] Yee K S . Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media[J]. IEEE Transactions on In Antennas and Propagation, 1966,14(3):302-307.
doi: 10.1109/TAP.1966.1138693
[31] Yee K S . Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media[J]. IEEE Transactions on In Antennas and Propagation, 1966,14(3):302-307.
doi: 10.1109/TAP.1966.1138693
[32] 冯德山, 王珣 . 探地雷达数值模拟及程序实现[M]. 长沙: 中南大学出版社, 2017.
[32] Feng D S, Wang X. Numerical simulation and program implementation of ground penetrating radar[M]. Changsha: Central South University Press, 2017.
[33] 王洪华, 戴前伟, 冯德山 . 探地雷达有限元正演及介电参数反演[M]. 长沙: 中南大学出版社, 2016.
[33] Wang H H, Dai Q W, Feng D S. Finite element forward modeling and dielectric parameter inversion of ground penetrating radar[M]. Changsha: Central South University Press, 2016.
[34] 舒志乐 . 隧道衬砌内空洞探地雷达探测正反演研究[D]. 重庆:重庆大学, 2010.
[34] Shu Z L . Research on forward and inversion of ground penetrating radar in tunnel lining[D]. Chongqing:Chongqing University, 2010.
[35] 王本锋, 陈小宏, 李景叶 , 等. 基于反演的稳定高效衰减补偿方法[J]. 地球物理学报, 2014,57(4):1265-1274.
doi: 10.6038/cjg20140423
[35] Wang B F, Chen X H, Li J Y , et al. A stable and efficient attenuation compensation method based on inversion[J]. Chinese J. Geophys. (in Chinese), 2014,57(4):1265-1274.
[36] Gloaguen E, Giroux B, Marcott D , et al. Pseudo-full-waveform inversion of borehole GPR data using stochastic tomography[J]. Geophysics, 2007,72(5):J43-J51.
doi: 10.1190/1.2755929
[1] 冯旭亮, 魏泽坤. 基于界面反演增强的位场边缘识别方法[J]. 物探与化探, 2022, 46(1): 130-140.
[2] 杨丹, 李伟, 魏永梁, 宋斌. 双树复小波变换在川藏铁路拉林段某隧道超前地质预报中的应用[J]. 物探与化探, 2021, 45(6): 1504-1511.
[3] 黄远生, 王彦国, 罗潇. 基于归一化磁源强度垂向差分的磁源参数快速估计方法[J]. 物探与化探, 2021, 45(6): 1588-1596.
[4] 何可, 郭明, 胡章荣, 易国财, 王仕兴. 半航空瞬变电磁L1范数自适应正则化反演[J]. 物探与化探, 2021, 45(5): 1338-1346.
[5] 郭培虹, 冯治汉, 王万银, 唐小平, 刘生荣. 北秦岭华阳川地区重磁三维反演及岩浆岩特征研究[J]. 物探与化探, 2021, 45(5): 1217-1225.
[6] 刘鸿洲, 王孟华, 张浩, 彭玲丽, 李雯, 张杰, 赵智鹏, 伍泽荆. 基于分频构形反演方法的河道砂精准预测——以华北冀中探区赵皇庄地区为例[J]. 物探与化探, 2021, 45(5): 1311-1319.
[7] 邢涛, 袁伟, 李建慧. 回线源瞬变电磁法的一维Occam反演[J]. 物探与化探, 2021, 45(5): 1320-1328.
[8] 刘辉, 李静, 曾昭发, 王天琪. 基于贝叶斯理论面波频散曲线随机反演[J]. 物探与化探, 2021, 45(4): 951-960.
[9] 马良涛, 范廷恩, 许学良, 董建华, 蔡文涛. 油气检测多技术联合在B油田的应用研究[J]. 物探与化探, 2021, 45(4): 961-969.
[10] 张鹏飞, 张世晖. 西湖凹陷平湖组砂泥岩岩性神经网络地震预测[J]. 物探与化探, 2021, 45(4): 1014-1020.
[11] 李瑞友, 张淮清, 吴昭. 基于在线惯序极限学习机的瞬变电磁非线性反演[J]. 物探与化探, 2021, 45(4): 1048-1054.
[12] 李凡, 周明, 李开天, 鲁恺, 李振宇. 单斜地形情况下的磁共振测深方法反演研究[J]. 物探与化探, 2021, 45(3): 712-725.
[13] 李志强, 孙洋, 谭捍东, 张承客. 带地形的ZTEM倾子资料三维正反演研究[J]. 物探与化探, 2021, 45(3): 758-767.
[14] 李英宾. 可控源音频大地电磁测量对腾格尔坳陷东北缘下白垩统赛汉组砂体的识别及其地质意义[J]. 物探与化探, 2021, 45(3): 616-623.
[15] 周月, 官大维, 延海涛, 张小龙. 基于先验信息约束的重磁电联合三维交互反演技术实践——以彭山穹隆构造为例[J]. 物探与化探, 2021, 45(2): 308-315.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com