Please wait a minute...
E-mail Alert Rss
 
物探与化探  2021, Vol. 45 Issue (2): 308-315    DOI: 10.11720/wtyht.2021.1220
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
基于先验信息约束的重磁电联合三维交互反演技术实践——以彭山穹隆构造为例
周月(), 官大维, 延海涛, 张小龙
安徽省勘查技术院,安徽 合肥 230031
3D gravity magnetic and electrical inversion modeling based on prior information: A case study of the dome structure in Pengshan area, Jiangxi Province
ZHOU Yue(), GUAN Da-Wei, YAN Hai-Tao, ZHANG Xiao-Long
Geological Exploration Technologies Institute of Anhui Province,Hefei 230031,China
全文: PDF(2714 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

三维地质建模是实现深部矿产勘查突破的重要途径,其通过控矿地质体的三维建模,直观刻画控矿要素之间的空间、成因和演化关系,帮助理解成矿系统,开展深部找矿预测。当前三维建模主要采用地质资料构建,在缺少钻孔等已知资料的情况下,难于构建出可靠的三维地质模型。为了克服常规三维地质建模方法可信度低、精度差的缺点,本文将重磁电交互反演技术引入到三维地质建模中,提出了基于先验信息约束,通过重磁二度半剖面交互反演、电法反演、三维物性反演联合修正的三维地质模型方法。本文采用该方法建立了彭山穹隆的三维地质模型,并在此基础上对彭山穹隆的成因进行了讨论。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周月
官大维
延海涛
张小龙
关键词 重磁电约束反演三维建模彭山穹隆构造    
Abstract

Three-dimensional geological modeling is an important way to realize the background of deep mineral exploration. Based on three-dimensional modeling of ore-controlling geological bodies, this method can directly describe the spatial, genetic and evolutionary relationship between the ore controlling factors. At present, the 3D modeling mainly uses geological data, but in the absence of drilling and other known information, it is difficult to construct a reliable 3D geological model. In order to overcome the disadvantages of poor accuracy and low reliability of conventional 3D geological modeling, the authors put forward an effective method based on the prior information. In this approach, a series of sections obtained by the 2.5D interactive inversion and electrical inversion, combined with the sections of 3D physical property inversion, are employed to correct the process of building a 3D geological model. With this method, the 3D geological model of the dome structure in Pengshan area has been successfully established. On this basis, the cause of the formation of the Pengshan dome structure is discussed.

Key wordsgravity magnetic and electrical constraint inversion    3D geological modeling    the dome structure in Pengshan area
收稿日期: 2020-04-27      修回日期: 2020-07-15      出版日期: 2021-04-20
ZTFLH:  P631  
基金资助:中国地质科学院地球物理与地球化学研究所项目“长江下游重点盆地地球物理基础调查”(DD20201164)
作者简介: 周月(1990-),男,工程师,主要从事地球物理勘查与综合研究工作。Email: 1003087497@qq.com
引用本文:   
周月, 官大维, 延海涛, 张小龙. 基于先验信息约束的重磁电联合三维交互反演技术实践——以彭山穹隆构造为例[J]. 物探与化探, 2021, 45(2): 308-315.
ZHOU Yue, GUAN Da-Wei, YAN Hai-Tao, ZHANG Xiao-Long. 3D gravity magnetic and electrical inversion modeling based on prior information: A case study of the dome structure in Pengshan area, Jiangxi Province. Geophysical and Geochemical Exploration, 2021, 45(2): 308-315.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2021.1220      或      https://www.wutanyuhuatan.com/CN/Y2021/V45/I2/308
Fig.1  彭山地区区域地质、重磁反演剖面位置
Fig.2  基于先验信息约束重磁电反演的三维地质建模技术流程
Fig.3  彭山地区布格重力异常
Fig.4  彭山地区剩余布格重力异常
Fig.5  彭山地区航磁化极异常
Fig.6  海拔0 m反演电阻率平面等值线
Fig.7  海拔-500 m反演电阻率平面等值线
Fig.8  海拔-1 000 m反演电阻率平面等值线
Fig.9  三维自动物性反演体数据显示
Fig.10  三维物性体数据各方向切片
地 层 主要岩性 密度参数/(103 kg·m-3) 磁化强度/(10-2 A·m-1)
S 粉砂岩、砂岩 2.5~2.6 0.66
O-∈ 白云岩、灰岩、泥灰岩 2.7~2.75 0.32
以∈1-Nh为主 泥岩、页岩、粉砂岩 2.55~2.65 0.5
Pt2和AnPt2为主 板岩、火山熔岩 2.6~2.75 0.5
酸性岩体 2.5~2.6 3.3
Table 1  彭山地区物性统计
Fig.11  NW5线重磁重磁正演拟合解释推断
Fig.12  彭山地区2.5D反演剖面三维空间分布
Fig.13  彭山地区三维地质模型立体图
[1] 兰学毅, 杜建国, 严加永, 等. 基于先验信息约束的重磁三维交互反演建模技术——以铜陵矿集区为例[J]. 地球物理学报, 2015,58(12):4436-4449.
[1] Lan X Y, Du J G, Yan J Y, et al. 3D gravity and magnetic interactive inversion modeling based on prior information:A case study of Zengjialong ore concentration area[J]. Chinese Journal of Geophysics, 2015,58(12):4436-4449.
[2] 马长信. 关于彭山高挥发份花岗岩底辟穹隆构造及其控矿作用[J]. 地质评论, 1989,35(2):127-135.
[2] Ma C X. A high volatile diapiric granite dome in the Pengshan area and its ore controlling role[J]. Geological Review, 1989,35(2):127-135.
[3] 赵志忠, 毕华. 江西彭山锡-多金属隐伏矿田的成矿机理及成矿预测[J]. 江西地质, 1992,6(3):210-216.
[3] Zhao Z Z, Bi H. Ore forming mechanism and ore-porming prediction of Pengshan tin polymetallic concetaled orefield in Jiangxi[J]. Jiangxi Geology, 1992,6(3):210-216.
[4] 毕华. 彭山源构造及其控矿作用[J]. 江西地质, 1990,5(3):12-16.
[4] Bi H. The Pengshan source structure and its control over mineralization[J]. Jiangxi Geology, 1990,5(3):12-16.
[5] 江西区测队. 江西省区域地质志[M]. 北京: 地质出版社, 1984.
[5] Jiangxi Regional Survey Party. Regional Geology of Jiangxi[M]. Beijing: Geological Publishing House, 1984.
[6] 刘南庆, 尹祝, 施权, 等. 赣北九瑞——彭山地区构造运动机制及其控矿作用分析[J]. 金属矿产, 2011,47(3):333-343.
[6] Liu N Q, Yin Z, Shi Q, et al. Analysis on the mechanism of tectonic movement and its ore controlling effect in the Pengshan and Jiujiang Ruichang areas,northern Jiangxi Province[J]. Geology and Exploration, 2011,47(3):333-343.
[7] 卢树东, 汪石林, 高文亮, 等. 江西彭山锡铅锌多金属矿床成矿特征与成因浅析[J]. 华东理工学院学报, 2004,27(3):201-208.
[7] Lu S D, Wang S L, Gao W L, et al. Study on metallogenic characteristics and genesis of Sn, Pb and Zn Polymetallic deposits in Penshan region, Jiangxi Province[J]. Journal of East China University of Technology, 2004,27(3):201-208.
[8] 卢树东, 肖锷, 朱元松. 江西彭山岩体的地球化学特征及成矿关系探讨[J]. 华南地质与矿产, 2004(2):297-305.
[8] Lu S D, Xiao E, Zhu Y S. Geochemical characteristics and related mineralization of Pengshan granitic body in Jiangxi Province[J]. Geology and Mineral Resource of South China, 2004(2):297-305.
[9] 卢树东, 杜杨松, 肖锷, 等. 江西彭山锡(铅锌)多金属矿田构造地质特征及成矿机理浅析[J]. 大地构造与成矿学, 2004,28(3):295-305.
[9] Lu S D, Du Y S, Xiao E, et al. Study on tectonic feature and metallogenic mechanism of Pengshan Sn-Pb-Zn ploymetallic orefield,Jiangxi Province[J]. Geotectonica et Metallogenia, 2004,28(3):295-305.
[10] 祁光, 吕庆田, 严加永, 等. 先验地质信息约束下的三维重磁反演建模研究—以安徽泥河铁矿为例[J]. 地球物理学报, 2012,55(12):4194-4206.
[10] Qi G, Lyu Q T, Yan J Y, et al. Geological constrained 3D gravity and magnetic modeling of Nihedeposit - a case study[J]. Chinese Journal of Geophysics, 2012,55(12):4194-4206.
[11] 祁光, 吕庆田, 严加永, 等. 基于先验信息约束的三维地质建模:以庐枞矿集区为例[J]. 地质学报, 2014,88(4):466-477.
[11] Qi G, Lyu Q T, Yan J Y, et al. 3D Geological modeling of Luzong ore district based on priori information constrained[J]. Acta Geological Sinica, 2014,88(4):466-477.
[12] 陈应军, 严加永. 澳大利亚三维地质填图进展与实例[J]. 地质与勘探, 2014,50(5):884-892.
[12] Chen Y J, Yan J Y. Progress and examples of three-dimensional geological mapping in Australia[J]. Geology and Exploration, 2014,50(5):884-892.
[13] 王万银, 王云鹏, 李建国, 等. 利用重、磁资料研究于都-赣县矿集区盘古山地区断裂构造及花岗岩体分布[J]. 物探与化探, 2014,38(4):826-834.
[13] Wang W Y, Wang Y P, Li J G, et al. Study on the faults structure and granite body distribution in Pangushan area of Yudu-Ganxian ore district using gravity and magnetic data[J]. Geophysical and Geochemical Exploration, 2014,38(4):826-834.
[14] 王亮, 张应文, 刘盛光. 区域重磁资料圈定贵州境内侵入岩体及局部地质构造[J]. 物探与化探, 2009,33(3):245-249.
[14] Wang L, Zhang Y W, Liu S G. The application of regional gravity and magnetic data to delineating bodies and local geological structures in Guizhou province[J]. Geophysical and Geochemical Exploration, 2009,33(3):245-249.
[15] 严加永, 吕庆田, 吴明安, 等. 安徽沙溪铜矿区域重磁三维反演与找矿启示[J]. 地质学报, 2014,88(4):507-518.
[15] Yan J Y, Lyu Q T, Wu M A, et al. prospecting indicator of Anhui Shaxi porphyry copper deposit based on regional gravity and magnetic 3D inversion[J]. Acta Geological Sinica, 2014,88(4):507-518.
[16] 张明华, 乔计花, 黄金明, 等. 重磁电数据处理解释软件—RGIS[M]. 北京: 地质出版社, 2011.
[16] Zhang M H, Qiao J H, Huang J M, et al. Gravity,magnetic and electrical data processing and interpretation software-RGIS[M]. Beijing: Geological Publishing House, 2011.
[1] 任喜荣, 李欣, 周志杰. 等值反磁通瞬变电磁法在金矿采空区探测中的应用[J]. 物探与化探, 2023, 47(2): 540-546.
[2] 何畏, 吴文鹂, 李建华, 林品荣, 梁萌, 顾观文, 冯斌. 一种电磁法三维数值模拟的建模与网格剖分方法[J]. 物探与化探, 2018, 42(6): 1272-1279.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com