Please wait a minute...
E-mail Alert Rss
 
物探与化探  2025, Vol. 49 Issue (5): 1126-1132    DOI: 10.11720/wtyht.2025.1444
  方法研究信息处理仪器研制 本期目录 | 过刊浏览 | 高级检索 |
音频大地电磁测深法数据质量监控——基于EH4测量电极对数据质量影响因素分析
林家勇1(), 徐志敏2(), 周聪3
1.云南国土资源职业学院,云南 昆明 652501
2.河北石油职业技术大学 仪器仪表工程技术研究中心,河北 承德 067000
3.东华理工大学 地球物理与测控技术学院,江西 南昌 330000
Data quality monitoring of the audio-frequency magnetotelluric method: Analysis of factors influencing data quality based on EH4 measurement electrodes
LIN Jia-Yong1(), XU Zhi-Min2(), ZHOU Cong3
1. Yunnan Land and Resources Vocational College, Kunming 652501, China
2. Hebei Instrument & Meter Engineering Technology Research Center, Hebei Petroleum University of Technology, Chengde 067000, China
3. School of Geophysics and Measurement-Control Technology, East China University of Technology, Nanchang 330000, China
全文: PDF(3136 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

音频大地电磁测深是一种广泛应用于中浅层地质探测的电法勘探技术,影响其数据质量的因素包括人文电磁干扰、电极极化和接地电阻等,本文主要研究电极极化和接地电阻对数据质量的影响规律。首先从理论上分析电极极化作用机理和接地电阻对视电阻率和相位的影响机理。然后结合实测数据分析了电极极化和接地电阻对视电阻率和相位曲线的影响规律,最后通过实测数据二维反演结果对比分析,揭示接地电阻对地质解释结果的影响。研究结果表明:电极极化会显著降低低频段数据质量,但可通过相应数据处理手段予以改善,对高频段影响较小;接地电阻不稳定主要影响高频段数据,造成视电阻率和相位显著降低,至低频段逐渐恢复稳定。此外,接地电阻不稳定将导致反演结果偏离真实地电结构,进而引发错误地质解释。本文研究结果为野外数据采集和资料处理提供了重要参考。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
林家勇
徐志敏
周聪
关键词 音频大地电磁测深数据质量测量电极电极极化接地电阻地质解释    
Abstract

The Audio-frequency Magnetotelluric (AMT) sounding method is an electrical exploration technique widely used for shallow to medium-depth geological investigations. Its data quality is influenced by various factors, including cultural electromagnetic interference, electrode polarization, and grounding resistance. This study focuses on the impact of electrode polarization and grounding resistance on AMT data quality. First, the mechanisms of electrode polarization and the influence of grounding resistance on apparent resistivity and impedance phase are theoretically analyzed. Then, based on measured data, the effects of electrode polarization and grounding resistance on apparent resistivity and phase curves are investigated. Finally, a comparative analysis of 2D inversion results from field data is conducted to reveal how grounding resistance affects geological interpretation. The results indicate that electrode polarization significantly degrades data quality in the low-frequency band, though this can be mitigated through data processing techniques, while its effect on high-frequency data is negligible. Unstable grounding resistance mainly influences the high-frequency range, causing notable reductions in apparent resistivity and phase, which gradually stabilize toward the low-frequency band. Moreover, unstable grounding resistance may lead to inversion results that deviate from the true geoelectrical structure, thereby resulting in erroneous geological interpretations. The findings of this study provide important guidance for field data acquisition and processing.

Key wordsaudio-frequency magnetotelluric (AMT) method    data quality    measurement electrode    electrode polarization    ground resistance    geological interpretation
收稿日期: 2024-11-12      修回日期: 2025-02-21      出版日期: 2025-10-20
ZTFLH:  P631  
基金资助:云南省教育厅科学研究基金项目(2022J1377);国家自然科学基金项目(42364006)
通讯作者: 徐志敏(1986-),男,副教授,主要从事大地电磁法信号分析与处理研究工作。Email:xuzhimindx@126.com
作者简介: 林家勇(1968-),男,副教授,主要从事大地电磁法数据分析与应用研究工作。Email:591425127@qq.com
引用本文:   
林家勇, 徐志敏, 周聪. 音频大地电磁测深法数据质量监控——基于EH4测量电极对数据质量影响因素分析[J]. 物探与化探, 2025, 49(5): 1126-1132.
LIN Jia-Yong, XU Zhi-Min, ZHOU Cong. Data quality monitoring of the audio-frequency magnetotelluric method: Analysis of factors influencing data quality based on EH4 measurement electrodes. Geophysical and Geochemical Exploration, 2025, 49(5): 1126-1132.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2025.1444      或      https://www.wutanyuhuatan.com/CN/Y2025/V49/I5/1126
Fig.1  EH4野外工作布置示意
Fig.2  不锈钢电极
Fig.3  铜电极
Fig.4  饱和硫酸铜不极化电极
Fig.5  固体不极化电极
Fig.6  接地电阻对视电阻率的影响
Fig.7  接地电阻对阻抗相位的影响
Fig.8  不同测量电极原始测量视电阻率—相位数据曲线
Fig.9  不同接地电阻原始测量视电阻率—相位数据曲线
Fig.10  云南福宜高速梁王山隧道勘察EH4数据二维反演结果剖面
[1] 陈乐寿, 王光锷. 大地电磁测深法[M]. 北京: 地质出版社,1990.
[1] Chen L T,Wang, G E. Magnetotelluric sounding method[M]. Beijing: Geological Publishing House,1990.
[2] The magnetotelluric method:Theory and practice[M]. Londong: Cambridge University Press, 2012.
[3] 樊战军, 卿敏, 于爱军, 等. EH4电磁成像系统在金矿勘查中的应用[J]. 物探与化探, 2007, 31(S1):72-76.
[3] Fan Z J, Qing M, Yu A J, et al. The application of EH4 electromagnetic imaging system to gold ore exploration[J]. Geophysical and Geochemical Exploration, 2007, 31(S1):72-76.
[4] 伍岳. EH4电磁成像系统在砂岩地区勘查地下水的应用研究[J]. 物探与化探, 1999, 23(5):335-338,346.
[4] Wu Y. The application of EH4 electromagnetic image system to groundwater exploration in sandstone areas[J]. Geophysical and Geochemical Exploration, 1999, 23(5):335-338,346.
[5] 徐志敏, 辛会翠, 谭新平, 等. 强电磁干扰区大地电磁远参考技术试验效果分析[J]. 物探与化探, 2018, 42(3):560-568.
[5] Xu Z M, Xin H C, Tan X P, et al. An analysis of the experimental result of MT remote reference technique in strong electromagnetic interference region[J]. Geophysical and Geochemical Exploration, 2018, 42(3):560-568.
[6] 林家勇, 丁茂斌, 汤井田, 等. EH-4电磁成像系统探测堆积体的应用研究[J]. 工程勘察, 2009, 37(12):84-89.
[6] Lin J Y, Ding M B, Tang J T, et al. EH-4 electromagnetic imaging systems to detect the accumulation of body applied research[J]. Geotechnical Investigation & Surveying, 2009, 37(12):84-89.
[7] 蒋伟, 段长生, 陈知富, 等. 音频大地电磁法在复杂地形铁路隧道勘察中的应用[J]. 矿产勘查, 2020, 11(5):1053-1059.
[7] Jiang W, Duan C S, Chen Z F, et al. Application of audio magnetotelluric method in railway tunnels exploration with complex topography[J]. Mineral Exploration, 2020, 11(5):1053-1059.
[8] 汤井田, 胡双贵, 肖晓. 接地电阻稳定性对音频大地电磁法测量的影响[J]. 物探化探计算技术, 2015, 37(5):547-551.
[8] Tang J T, Hu S G, Xiao X. The effect of grounding resistance' stability on AMT[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2015, 37(5):547-551.
[9] 汤井田, 化希瑞, 任政勇. 基于钢筋锚杆接地电阻评价锚固质量研究[J]. 地球物理学进展, 2006, 21(2):614-619.
[9] Tang J T, Hua X R, Ren Z Y. Evaluating the quality of steel anchor by grounding resistance[J]. Progress in Geophysics, 2006, 21(2):614-619.
[10] Petiau G, Dupis A. Noise,temperature coefficient,and long time stability of electrodes for telluric observations[J]. Geophysical Prospecting, 1980, 28(5):792-804.
[11] 李汝传. MN长度误差及接地电阻对卡尼亚电阻率的影响[J]. 地质与勘探, 2004, 40(S1):188-190.
[11] Li R C. The effects of errors in MN electrode-spacing and grounding resistance on cagniard resistivity[J]. Geology and Exploration, 2004, 40(S1):188-190.
[12] 王辉, 叶高峰, 魏文博, 等. 大地电磁测深中大地电场的高精度采集技术[J]. 地球物理学进展, 2013, 28(3):1199-1207.
[12] Wang H, Ye G F, Wei W B, et al. High-precision acquisition technology of telluric field on magnetotellurics[J]. Progress in Geophysics, 2013, 28(3):1199-1207.
[13] 张友山, 何继善. 接地电阻对地电场观测的影响及克服方法[J]. 中国有色金属学报, 1996, 6(1):1-5.
[13] Zhang Y S, He J S. The effects of the contact resistance of electrode on the measurements and their removal[J]. The Chinese Journal of Nonferrous Metals, 1996, 6(1):1-5.
[14] 陆阳泉, 梁子斌, 刘建毅. 固体不极化电极的研制及其应用效果[J]. 物探与化探, 1999, 19(1):64-65,71.
[14] Lu Y Q, Liang Z B, Liu J Y. The development and application of solid nonpolarized electrodes[J]. Geophysical and Geochemical Exploration, 1999, 19(1):64-65,71.
[15] 杨会民, 陈珺, 刘波. 影响接地电阻的因素及减小接地电阻的方法[J]. 中国测试, 2009, 35(2):106-108,115.
[15] Yang H M, Chen J, Liu B. Influence factors and reducing methods of earth resistances[J]. China Measurement & Test, 2009, 35(2):106-108,115.
[16] 刘泽西, 王勇, 谢新萍. 接地电阻的影响因素分析[J]. 电工电气, 2010(10):22-24,57.
[16] Liu Z X, Wang Y, Xie X P. Impact factor analysis of grounding resistance[J]. Electrotechnics Electric, 2010(10):22-24,57.
[17] Perrier F E, Petiau G, Clerc G, et al. A one-year systematic study of electrodes for long period measurements of the electric field in geophysical environments[J]. Journal of Geomagnetism and Geoelectricity, 1997, 49(11):1677-1696.
[18] Hördt A, Weidelt P, Przyklenk A. Contact impedance of grounded and capacitive electrodes[J]. Geophysical Journal International, 2012, 191(2):187-196.
[1] 李栋, 张明财, 吴远洋. 音频大地电磁接地电阻校正技术研究[J]. 物探与化探, 2025, 49(3): 614-619.
[2] 胡英才, 王瑞廷, 李貅. 激电效应对AMT正演的影响及其在砂岩型铀矿中的数值模拟[J]. 物探与化探, 2024, 48(4): 1006-1017.
[3] 夏时斌, 廖国忠, 邓国仕, 杨剑, 李富. 高密度电法和音频大地电磁测深法在西南岩溶地区地下水勘探中的应用[J]. 物探与化探, 2024, 48(3): 651-659.
[4] 何俊飞. 综合物探在新兴都斛铜矿床勘查中的应用[J]. 物探与化探, 2024, 48(2): 375-381.
[5] 张冕, 张春灌, 赵敏, 钟振华, 袁炳强, 周磊, 韩梅. 地球磁异常EMAG2v3与全球重力数据库V29数据质量综合评估——以北极地区Aegir脊为例[J]. 物探与化探, 2023, 47(6): 1410-1416.
[6] 杨天春, 胡峰铭, 于熙, 付国红, 李俊, 杨追. 天然电场选频法的响应特性分析与应用[J]. 物探与化探, 2023, 47(4): 1010-1017.
[7] 耿涛. 地面高精度磁测野外工作中仪器校正点使用的常见问题及应对方法[J]. 物探与化探, 2023, 47(4): 1078-1082.
[8] 蒋首进, 陈永凌, 李怀远, 胡俊峰. 藏东南冻错曲塘布段冰碛物电阻率特征[J]. 物探与化探, 2023, 47(1): 73-80.
[9] 孙海川. 兰州新区西部恐龙园区块地热地质条件分析[J]. 物探与化探, 2022, 46(6): 1411-1418.
[10] 王佳龙, 邸兵叶, 张宝松, 赵东东. 音频大地电磁法在地热勘查中的应用——以福建省宁化县黄泥桥地区为例[J]. 物探与化探, 2021, 45(3): 576-582.
[11] 刘成功, 景建恩, 金胜, 魏文博. 广西大厂矿田深部成矿预测及成矿机制研究[J]. 物探与化探, 2021, 45(2): 337-345.
[12] 刘俊峰, 程云涛, 邓志强, 周芳春, 曹创华, 刘翔, 曾美强, 李杰, 黄志彪, 陈虎. CSAMT与AMT数据“拼接”处理——以湖南仁里铌钽矿床7号剖面为例[J]. 物探与化探, 2021, 45(1): 68-75.
[13] 屈利军, 王庆, 李波, 姚伟. 综合物探方法在湖南香花岭矿田三合圩矿区深部成矿规律研究中的应用[J]. 物探与化探, 2020, 44(6): 1313-1321.
[14] 朱自串, 周丹, 李德文, 余润龙. 音频大地电磁测深法在老挝万象盆地钾镁盐矿产勘探中的运用效果[J]. 物探与化探, 2019, 43(6): 1268-1276.
[15] 孙海川, 刘永亮, 邵程龙. 综合物探在海石湾地区地热勘查中的应用[J]. 物探与化探, 2019, 43(2): 290-297.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com