Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (3): 786-793    DOI: 10.11720/wtyht.2024.1454
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于非对称设计的高密度电法观测装置研究
庞永昊(), 沈昭昂, 常志喜, 李广场, 陈美, 谢志伟, 王威()
浙江华东岩土勘察设计研究院有限公司,浙江 杭州 310030
An observation device based on asymmetric design for high-density resistivity imaging
PANG Yong-Hao(), SHEN Zhao-Ang, CHANG Zhi-Xi, LI Guang-Chang, CHEN Mei, XIE Zhi-Wei, WANG Wei()
Zhejiang Huadong Geotechnical Investigation & Design Institute Co., Ltd., Hangzhou 310030, China
全文: PDF(5600 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

高密度电阻率法需要较好的接地条件来保证地电场的建立和测量,当遇到刚性路面等不良接地条件时,部分电极无法插入地下,将导致标准观测装置的数据缺失,影响成像质量。为此,本文提出了一种快速的观测装置设计方法,依靠缺失数据记录点的空间位置,使用非对称四极电极排列进行补充。数值模拟表明,该方法对温纳、斯伦贝谢和偶极—偶极装置的成像效果均有明显提升,且设计时间仅为秒级。该方法被成功应用到宁波堤防工程现场探测中,降低了机动车道对数据质量的影响,准确定位了堤防位置。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
庞永昊
沈昭昂
常志喜
李广场
陈美
谢志伟
王威
关键词 高密度电法工程物探观测装置刚性路面电极阵列    
Abstract

For the high-density resistivity method, favorable grounding conditions are required to ensure the establishment and measurement of the geoelectric field. Otherwise, unfavorable grounding conditions, like rigid pavement, will prevent some electrodes from being inserted into the ground, leading to the loss of valid data from standard observation devices and reducing the imaging quality. Therefore, this study proposed a method for the fast observation device design. This method supplemented data using an asymmetric quadrupole electrode array according to the spatial positions of missing data's recording points. Numerical simulations show that the method proposed in this study significantly improved the imaging effects of Wenner, Schlumberger, and dipole-dipole arrays, with a second-scale design time. In this study, an observation device based on asymmetric design for high-density resistivity imaging was successfully applied to the embankment detection in Ningbo, reducing the influence of motor lanes on data quality and accurately locating the embankment position.

Key wordshigh-density resistivity method    engineering geophysical exploration    observation device    rigid pavement    electrode array
收稿日期: 2023-10-19      修回日期: 2023-11-17      出版日期: 2024-06-20
ZTFLH:  P631  
基金资助:浙江华东岩土勘察设计研究院有限公司科技立项项目(ZKY2022-HDJS-02-08);浙江华东岩土勘察设计研究院有限公司科技立项项目(ZKY2023-HDJS-02-08)
通讯作者: 王威(1989-),男,博士,高级工程师,毕业于浙江大学,主要从事地球物理探测工作。Email:wei_wang_89@qq.com
作者简介: 庞永昊(1994-),男,博士后,博士毕业于山东大学,主要从事直流电法勘探工作。Email:yonghao_pang@163.com
引用本文:   
庞永昊, 沈昭昂, 常志喜, 李广场, 陈美, 谢志伟, 王威. 基于非对称设计的高密度电法观测装置研究[J]. 物探与化探, 2024, 48(3): 786-793.
PANG Yong-Hao, SHEN Zhao-Ang, CHANG Zhi-Xi, LI Guang-Chang, CHEN Mei, XIE Zhi-Wei, WANG Wei. An observation device based on asymmetric design for high-density resistivity imaging. Geophysical and Geochemical Exploration, 2024, 48(3): 786-793.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1454      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I3/786
Fig.1  标准观测装置及数据记录点位置
Fig.2  电极排列补充策略示意
Fig.3  温纳装置在补充前后的数据分布
Fig.4  温纳装置的敏感性分布
Fig.5  斯伦贝谢装置在补充前后的数据分布
Fig.6  斯伦贝谢装置的敏感性分布
Fig.7  偶极—偶极装置在补充前后的数据分布
Fig.8  偶极—偶极装置的敏感性分布
Fig.9  温纳装置优化前后的试验结果对比
Fig.10  斯伦贝谢装置优化前后的试验结果对比
Fig.11  偶极—偶极装置优化前后的试验结果对比
Fig.12  工作场景
a—电极布置;b—沥青路面引起的电极空缺
Fig.13  优化前、后的高密度电法反演电阻率断面
Fig.14  开挖揭露的地质情况
[3] Zhou J B, Luo R H, He C K, et al. New geophysical evidence for Karst water-bearing seepage pathways in the Xiaohewei Reservoir,Wenshan City[J]. Geophysical and Geochemical Exploration, 2023, 47(3):707-717.
[4] Li S C, Xu S, Nie L C, et al. Assessment of electrical resistivity imaging for pre-tunneling geological characterization:A case study of the Qingdao R3 metro line tunnel[J]. Journal of Applied Geophysics, 2018,153:38-46.
[5] Guo Q, Pang Y H, Liu R T, et al. Integrated investigation for geological detection and grouting assessment:A case study in Qingdao subway tunnel,China[J]. Journal of Environmental and Engineering Geophysics, 2019, 24(4):629-639.
[6] 覃剑文, 姜晓腾, 谢贵城, 等. 基于高密度电法的城市复杂环境岩溶探查研究——以贵港市北环新村为例[J]. 物探与化探, 2023, 47(2):530-539.
[6] Qin J W, Jiang X T, Xie G C, et al. Karst exploration in urban complex environments based on electrical resistivity tomography:A case study of Beihuan New Village in Guigang City[J]. Geophysical and Geochemical Exploration, 2023, 47(2):530-539.
[7] Bauman P. 2D resistivity surveying for hydrocarbons--A primer[J]. CSEG Recorder, 2005, 30(4):25-33.
[8] Legault J M, Carriere D, Petrie L. Synthetic model testing and distributed acquisition dc resistivity results over an unconformity uranium target from the Athabasca Basin,northern Saskatchewan[J]. The Leading Edge, 2008, 27(1):46-51.
[9] Dahlin T, Zhou B. A numerical comparison of 2D resistivity imaging with 10 electrode arrays[J]. Geophysical Prospecting, 2004, 52(5):379-398.
[10] Loke, Tutorial M H. 2D and 3D electrical imaging surveys[G]//Course Notes for USGS Workshop.2D and 3D Inversion and Modeling of Surface and Borehole Resistivity Data. 2001.
[11] Furman A, Ferre T P A, Warrick A W. Optimization of ERT surveys for monitoring transient hydrological events using perturbation sensitivity and genetic algorithms[J]. Vadose Zone Journal, 2004, 3(4):1230-1239.
[12] Nenna V, Pidlisecky A, Knight R. Informed experimental design for electrical resistivity imaging[J]. Near Surface Geophysics, 2011, 9(5):469-482.
[13] Wilkinson P B, Meldrum P I, Chambers J E, et al. Improved strategies for the automatic selection of optimized sets of electrical resistivity tomography measurement configurations[J]. Geophysical Journal International, 2006, 167(3):1119-1126.
[14] Wilkinson P B, Loke M H, Meldrum P I, et al. Practical aspects of applied optimized survey design for electrical resistivity tomography[J]. Geophysical Journal International, 2012, 189(1):428-440.
[15] Wilkinson P B, Uhlemann S, Meldrum P I, et al. Adaptive time-lapse optimized survey design for electrical resistivity tomography monitoring[J]. Geophysical Journal International, 2015, 203(1):755-766.
[16] Uhlemann S, Wilkinson P B, Maurer H, et al. Optimized survey design for electrical resistivity tomography:Combined optimization of measurement configuration and electrode placement[J]. Geophysical Journal International, 2018, 214(1):108-121.
[17] Loke M H, Wilkinson P B, Chambers J E, et al. Optimized arrays for 2D resistivity survey lines with a large number of electrodes[J]. Journal of Applied Geophysics, 2015,112:136-146.
[18] Qiang S Y, Shi X Q, Kang X Y, et al. Optimized arrays for electrical resistivity tomography survey using Bayesian experimental design[J]. Geophysics, 2022, 87(4):E189-E203.
[19] Szalai S, Szarka L. On the classification of surface geoelectric arrays[J]. Geophysical Prospecting, 2008, 56(2):159-175.
[1] Kim J H, Yi M J, Song Y, et al. Application of geophysical methods to the safety analysis of an earth dam[J]. Journal of Environmental and Engineering Geophysics, 2007, 12(2):221-235.
[2] Bedrosian P A, Burton B L, Powers M H, et al. Geophysical investigations of geology and structure at the Martis Creek Dam,Truckee,California[J]. Journal of Applied Geophysics, 2012,77:7-20.
[3] 周建兵, 罗锐恒, 贺昌坤, 等. 文山小河尾水库岩溶含水渗漏通道的地球物理新证据[J]. 物探与化探, 2023, 47(3):707-717.
[20] Sharma P V. Environmental and Engineering Geophysics[D]. Cambridge: Cambridge University Press,1997.
[1] 夏时斌, 廖国忠, 邓国仕, 杨剑, 李富. 高密度电法和音频大地电磁测深法在西南岩溶地区地下水勘探中的应用[J]. 物探与化探, 2024, 48(3): 651-659.
[2] 周建兵, 罗锐恒, 贺昌坤, 潘晓东, 张绍敏, 彭聪. 文山小河尾水库岩溶含水渗漏通道的地球物理新证据[J]. 物探与化探, 2023, 47(3): 707-717.
[3] 覃剑文, 姜晓腾, 谢贵城, 孙汉武, 何流, 孙怀凤. 基于高密度电法的城市复杂环境岩溶探查研究——以贵港市北环新村为例[J]. 物探与化探, 2023, 47(2): 530-539.
[4] 余长恒, 郑健, 张旭林, 周昊, 王安平, 刘磊, 李易. 川南地区页岩气井平台钻前工程物探集成技术[J]. 物探与化探, 2023, 47(1): 99-109.
[5] 王强, 田野, 刘欢, 朱春光, 白超琨, 郝森. 综合物探方法在煤矿采空区探测中的应用[J]. 物探与化探, 2022, 46(2): 531-536.
[6] 张宇哲, 孟麟, 王智. 基于Gmsh的起伏地形下井—地直流电法正演模拟[J]. 物探与化探, 2022, 46(1): 182-190.
[7] 丁卫忠, 孙夫文, 李建华, 郑采君, 林品荣, 齐方帅. 城市地下空间探测多参数并行高密度电法系统研制[J]. 物探与化探, 2021, 45(6): 1448-1454.
[8] 陈学群, 李成光, 田婵娟, 刘丹, 辛光明, 管清花. 高密度电阻率法在咸水入侵监测中的应用[J]. 物探与化探, 2021, 45(5): 1347-1353.
[9] 苏宝, 刘晓丽, 卫晓波, 高歌, 王云鹏. 井间超高密度电阻率法溶洞探测研究[J]. 物探与化探, 2021, 45(5): 1354-1358.
[10] 吴教兵, 黎峻良, 江兰, 陆俊宏, 潘黎黎, 韦王秋. 综合物探方法在广西罗城县活动断裂鉴定中的应用[J]. 物探与化探, 2021, 45(2): 346-354.
[11] 危志峰, 陈后扬, 吴西全. 广域电磁法在宜春某地地热勘查中的应用[J]. 物探与化探, 2020, 44(5): 1009-1018.
[12] 苏永军, 范翠松, 赵更新, 张国利, 刘宏伟, 孙大鹏. 综合电法在探测海水入侵界面中的研究与应用——以莱州湾地区为例[J]. 物探与化探, 2020, 44(3): 704-708.
[13] 王战军. 电法在追索水库坝区地下暗河中的应用[J]. 物探与化探, 2019, 43(5): 1157-1162.
[14] 孙大利, 李貅, 齐彦福, 孙乃泉, 李文忠, 周建美, 孙卫民. 基于非结构网格三维有限元堤坝隐患时移特征分析[J]. 物探与化探, 2019, 43(4): 804-814.
[15] 曹煜, 刘盛东, 唐润秋, 陈兴海, 戚俊, 周官群, 王宗涛. 电法并行采集AM排列推导ABM排列技术研究[J]. 物探与化探, 2016, 40(6): 1157-1165.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com