Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (3): 714-721    DOI: 10.11720/wtyht.2022.1386
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
免维护超低噪声固体不极化电极的研制与性能测试
王辉1,2(), 付书计2, 葛帅寅2, 马方圆2, 宋宝家2, 罗景程3
1.中国矿业大学(北京) 煤炭资源与安全开采国家重点实验室,北京 100083
2.中国矿业大学(北京) 地球科学与测绘工程学院,北京 100083
3.中国煤炭地质总局 勘查研究总院,北京 100039
Development and performance tests of maintenance-free ultra-low noise solid nonpolarizing electrodes
WANG Hui1,2(), FU Shu-Ji2, GE Shuai-Yin2, MA Fang-Yuan2, SONG Bao-Jia2, LUO Jing-Cheng3
1. State Key Laboratory of Coal Resources and Safe Mining, China University of Mining & Technology, Beijing 100083, China
2. School of Earth Science and Surveying Engineering, China University of Mining & Technology, Beijing 100083, China
3. General Exploration and Research Institute of China General Administration of Coal Geology, Beijing 100039, China
全文: PDF(5457 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

针对传统不极化电极极差稳定性差、低频噪声大、寿命短、需要定期维护等缺点,研制出免维护超低噪声固体Pb-PbCl2不极化电极。室内测试结果表明:所研制的电极极差在一个月内漂移小于0.06 mV,只有法国进口PMS9000电极的5%;温度系数小于20 μV/℃,不到PMS9000电极的1/5;在100 m电极距条件下,相对于天然感应电场的信噪比为40 dB@103 s、20 dB@104 s和10 dB@105 s。野外对比测试表明:利用新研制的固体不极化电极可以明显提高对地电场信号的采集精度,显著提升大地电磁死频带和低频段数据质量。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王辉
付书计
葛帅寅
马方圆
宋宝家
罗景程
关键词 固体不极化电极地电场观测极差温度系数大地电磁    
Abstract

To overcome the shortcomings of traditional nonpolarizing electrodes, such as the poor stability of potential difference, high low-frequency noise, short life, and requiring regular maintenance, the authors researched and developed maintenance-free ultra-low noise Pb-PbCl2 nonpolarizing electrodes after over a decade of development and constant tests. Lab test results show that the new nonpolarizing electrodes have a potential difference drift within one month of less than ±0.06 mV and a temperature coefficient of less than 20 μV/℃, which are 5% and less than one-fifth of those of the PMS9000 electrodes exported from France, respectively; under the ideal condition of the distance between two adjacent electrodes of 100 m, the signal-to-noise ratios relative to the natural induced electric field are 40dB@103s, 20dB@104s, and 10dB@105s. The field comparative tests show that the newly developed solid nonpolarizing electrodes can significantly improve the acquisition accuracy of geoelectric field signals and the data quality of dead and low magnetotelluric frequency bands.

Key wordssolid nonpolarizing electrode    geoelectric field observation    potential difference    temperature coefficient    magnetotelluric
收稿日期: 2021-07-13      出版日期: 2022-06-21
ZTFLH:  P631  
基金资助:煤炭资源与安全开采国家重点实验室开放基金项目(SKLCRSM21KFA07);中国矿业大学(北京)煤炭资源与安全开采国家重点实验室大学生科技创新计划项目(SKLCRSM20DC07);国家自然科学基金项目(41604064);中国高校基本科研业务费(2022YQDC02);中国高校基本科研业务费(2021YJSDC08)
作者简介: 王辉(1987-),男,副教授,湖南郴州人;主要从事地球电磁学及电法勘探研究工作。Email: wanghui@cumtb.edu.cn
引用本文:   
王辉, 付书计, 葛帅寅, 马方圆, 宋宝家, 罗景程. 免维护超低噪声固体不极化电极的研制与性能测试[J]. 物探与化探, 2022, 46(3): 714-721.
WANG Hui, FU Shu-Ji, GE Shuai-Yin, MA Fang-Yuan, SONG Bao-Jia, LUO Jing-Cheng. Development and performance tests of maintenance-free ultra-low noise solid nonpolarizing electrodes. Geophysical and Geochemical Exploration, 2022, 46(3): 714-721.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.1386      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I3/714
Fig.1  自主研制免维护固体不极化电极实物图
电极性能 电极型号
IPEL EL LEL SLEL LREL PMS9000
任意两个电极极差/mV 0.5 0.5 0.3 0.2 0.2 0.6
质量/kg 0.15 0.2 0.25 0.3 0.4 0.25
直径/cm 3.5 2.5 3.5 3.5 3.5 3.2
高度/cm 8 16 16 21 26 18
温度系数/(μV·℃-1) <40 <40 <20 <20 <10 >100
1天内极差漂移/mV <|0.5| <|0.3| <|0.1| <|0.02| <|0.02| <|0.1|
1个月内极差漂移/mV <|1| <|0.5| <|0.1| <|0.05| <|0.05| <|1|
信噪比@100m@103 s/dB 20 20 40 40 40 20
信噪比@100m@104 s/dB 0 0 20 20 30 10
信噪比@100m@105 s/dB 10 10 10 -10
使用寿命/a 1 1 2 5 10 未测试
用途 IP/SP
AMT/CSAMT
IP/SP/AMT/
CSAMT/MT
MT/LMT LMT等对电位
的长期观测
水坝、阴极保护等对
地电位的长年观测
IP/SP/AMT/
CSAMT/MT
Table 1  室内电极性能测试结果
Fig.2  2种型号电极的极差漂移对比
Fig.3  电极极差随温度的变化曲线
Fig.4  用于计算理想电场信号的大地电磁阻抗(a)与理想的大地电场信号(b)
Fig.5  利用不同电极在100 m电极距情况下采集理想电场信号的信噪比
Fig.6  安徽某地不同电极采集的大地电磁数据对比
Fig.7  不同电极在新疆某地实测大地电磁数据对比
[1] He L, Chen L, Dorji D, et al. Mapping chromite deposits with audio magnetotellurics in the Luobusa ophiolite of southern Tibet[J]. Geophysics, 2020, 83(2): B47-B57.
doi: 10.1190/geo2017-0110.1
[2] Marquis G, Darnet M, Sailhac P, et al. Surface electric variations induced by deep hydraulic stimulation: An example from the Soultz HDR site[J]. Geophysical Research Letters, 2002, 29(14): 71-74.
[3] Revil A, Hermitte D, Voltz M, et al. Self-potential signals associated with variations of the hydraulic head during an infiltration experiment[J]. Geophysical Research Letters, 2002, 29(7): 101-104.
[4] Petiau G, Dupis A. Noise, temperature coefficient, and long time stability of electrodes for telluric observations[J]. Geophysical Prospecting, 1980, 28(5): 792-804.
doi: 10.1111/j.1365-2478.1980.tb01261.x
[5] 董亮, 吴桐, 吴昉赟, 等. 长效铜/饱和硫酸铜参比电极的研究进展[J]. 腐蚀与防护, 2020, 41(6):1-6.
[5] Dong L, Wu T, Wu F Y, et al. Progress of permanent copper/saturated copper sulfate reference electrode[J]. Corrosion and Protection, 2020, 41(6): 1-6.
[6] 邓明, 刘志刚, 白宜诚, 等. 海底电场传感器原理及研制技术[J]. 地质与勘探, 2002(6):43-47.
[6] Deng M, Liu Z G, Bai Y C, et al. The theory and development technology of the sea-floor electric field sensor[J]. Geology and Exploration, 2002(6): 43-47.
[7] 王辉, 叶高峰, 魏文博. Pb-PbCl2不极化电极的设计与实现[J]. 地震地磁观测与研究, 2010, 31(3):115-120.
[7] Wang H, Ye G F, Wei W B. The design and implementation of non-polarizable Pb-PbCl2 electrodes[J]. Seismological and Geomagnetic Observation and Research, 2010, 31(3): 115-120.
[8] Chen K, Jin S, Wang S. Electromagnetic receiver with capacitive electrodes and triaxial induction coil for tunnel exploration[J]. Earth, Planets and Space, 2017, 69(1): 1-10.
doi: 10.1186/s40623-016-0587-x
[9] Wang Z, Deng M, Chen K, et al. Development and evaluation of an ultralow-noise sensor system for marine electric field measurements[J]. Sensors and Actuators A: Physical, 2014, 213:70-78.
doi: 10.1016/j.sna.2014.03.026
[10] Perrier F E, Petiau G, Clerc G, et al. A one-year systematic study of electrodes for long period measurements of the electric field in geophysical environments[J]. Journal of Geomagnetism and Geoelectricity, 1997, 49(11-12): 1677-1696.
doi: 10.5636/jgg.49.1677
[11] Petiau G. Second generation of lead-lead chloride electrodes for geophysical applications[J]. Pure and Applied Geophysics, 2000, 157(3): 357-382.
doi: 10.1007/s000240050004
[12] Perrier F. Long-term stabilly and installion bias of Petiau clay electrodes[C]// 22nd EM Induction Workshop Weimar, 2014.
[13] 陆阳泉, 梁子斌, 刘建毅. 固体不极化电极的研制及其应用效果[J]. 物探与化探, 1999, 71(1):65-66.
[13] Lu Y Q, Liang Z B, Liu J Y. The development and application of solid nonpolarized electrodes[J]. Geophysical and Geochemical Exploration, 1999, 71(1): 65-66.
[14] 宋艳茹, 席继楼, 刘超, 等. 一种Pb-PbCl2不极化电极试验研究[J]. 地震地磁观测与研究, 2011, 32(6):97-103.
[14] Song Y R, Xi J L, Liu C, et al. Research on a type of Pb-PbCl2 non-polarizable electrode[J]. Seismological and Geomagnetic Observation and Research, 2011, 32(6): 97-103.
[15] 姜健. 井—地ERT不极化电极设计与性能研究[D]. 长春: 吉林大学, 2013.
[15] Jiang J. Design and performance of nonpolarized electrode for well ground ERT[D]. Changchun: Jilin University, 2013.
[16] 尚延杰. 固体不极化电极的研究与制作[D]. 成都: 成都理工大学, 2020.
[16] Shang Y J. Research and fabrication of solid non-polarized electrode[D]. Changdu: Chengdu University of Technology, 2020.
[17] Wang H, Egbert G, Yao Y, et al. Array analysis of magnetic and electric field observatories in China: estimation of magnetotelluric impedances at very long periods[J]. Geophysical Journal International, 2020, 222(1): 305-326.
doi: 10.1093/gji/ggaa169
[18] Solution technologiques pour L'Environment unpolarizable electrodes for self potentials measurements-PMS 9000[EB/OL].(2020-04-10) [2021-07-10] https://www.sdec-france.com/soil-science-equipment-sensor-pms9000.html.
[19] Wang H, Campanyà J, Cheng J, et al. Synthesis of natural electric and magnetic Time-series using Inter-station transfer functions and time-series from a Neighboring site (STIN): Applications for processing MT data[J]. Journal of Geophysical Research Solid Earth, 2017, 122(8): 5835-5851.
doi: 10.1002/2017JB014190
[20] Kuvshinov A, Grayver A, Tøffner-Clausen L, et al. Probing 3-D electrical conductivity of the mantle using 6 years of Swarm, CryoSat-2 and observatory magnetic data and exploiting matrix Q-responses approach[J]. Earth, Planets and Space, 2021, 73(1): 1-26.
doi: 10.1186/s40623-020-01323-x
[21] Egbert G D, Booker J R. Robust estimation of geomagnetic transfer functions[J]. Geophysical Journal International, 1986, 87(1): 173-194.
doi: 10.1111/j.1365-246X.1986.tb04552.x
[1] 罗贤虎, 邓明, 邱宁, 孙珍, 王猛, 景建恩, 陈凯. MicrOBEM:小型海底电磁接收机[J]. 物探与化探, 2022, 46(3): 544-549.
[2] 乔玉, 陈凯, 阳琴. 海底电磁接收机的通道标定计算程序[J]. 物探与化探, 2022, 46(3): 550-556.
[3] 何帅, 杨炳南, 阮帅, 李永刚, 韩姚飞, 朱大伟. 三维AMT正反演技术对贵州马坪含金刚石岩体探测的精细解释[J]. 物探与化探, 2022, 46(3): 618-627.
[4] 赵理芳, 李爱勇, 王导丽, 张明鹏, 周锡明. 基于电阻率测井曲线的大地电磁测深标定[J]. 物探与化探, 2022, 46(3): 737-742.
[5] 陈大磊, 王润生, 贺春艳, 王珣, 尹召凯, 于嘉宾. 综合地球物理探测在深部空间结构中的应用——以胶东金矿集区为例[J]. 物探与化探, 2022, 46(1): 70-77.
[6] 陈钧, 严良俊, 周磊. 基于Hilbert-Huang 变换的大地电磁去噪研究[J]. 物探与化探, 2021, 45(6): 1462-1468.
[7] 李帝铨, 肖教育, 张继峰, 胡艳芳, 刘最亮, 张新. WFEM与CSAMT在新元煤矿富水区探测效果对比[J]. 物探与化探, 2021, 45(5): 1359-1366.
[8] 程云涛, 刘俊峰, 曹创华, 王荡. 衡阳盆地西北缘物化探特征及其找矿意义[J]. 物探与化探, 2021, 45(5): 1189-1195.
[9] 余永鹏, 闫照涛, 毛兴军, 杨彦成, 马永祥, 黄鹏程, 陆爱国, 张广兵. 巨厚新生界覆盖区煤炭勘查中的电震综合方法应用[J]. 物探与化探, 2021, 45(5): 1231-1238.
[10] 刘彦涛, 彭莉红, 孙栋华, 张伟盟, 王海红. 基于三维有限元的航空大地电磁倾子响应特征[J]. 物探与化探, 2021, 45(5): 1329-1337.
[11] 彭明涛, 王磊, 曾明勇, 谢兵兵, 莫韦涛. 综合物探方法在川东高陡断褶带隐伏断层勘探中的应用研究[J]. 物探与化探, 2021, 45(4): 882-889.
[12] 田郁, 乐彪. 复杂异常体模型下的三维MT倾子正演模拟[J]. 物探与化探, 2021, 45(4): 1021-1029.
[13] 屈挺, 贺日政, 鱼鹏亮, 王素芬, 陈小龙, 刘建利. 西藏甲玛矿区岩石物性统计及应用[J]. 物探与化探, 2021, 45(3): 661-668.
[14] 王佳龙, 邸兵叶, 张宝松, 赵东东. 音频大地电磁法在地热勘查中的应用——以福建省宁化县黄泥桥地区为例[J]. 物探与化探, 2021, 45(3): 576-582.
[15] 周武, 罗威, 蓝星, 简兴祥. 大地电磁交错采样有限差分二维正反演研究[J]. 物探与化探, 2021, 45(2): 458-465.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com