Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (5): 1306-1314    DOI: 10.11720/wtyht.2022.1622
  工程勘察 本期目录 | 过刊浏览 | 高级检索 |
多激励源瞬变电磁探测方法在煤矿采空区的应用
孙海川(), 王文忠, 李治中, 刘永亮
甘肃煤炭地质勘查院,甘肃 兰州 730000
Application of the multi-excitation source transient electromagnetic method in the coal mine goaves
SUN Hai-Chuan(), WANG Wen-Zhong, LI Zhi-Zhong, LIU Yong-Liang
Gansu Coal Geological Prospecting Institute, Lanzhou 730000,China
全文: PDF(7609 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

大定源回线是瞬变电磁方法的常用装置,移动发射框需要耗费巨大的人力和时间,极大降低了工作效率;电性源瞬变电磁法具有探测深度大、受地形限制小、工作效率高等优点,但偏移距较大时,采集信号强度衰减强烈,信噪比降低,在一定程度上限制了探测精度。为了解决精细地质探测的实际问题,采用多激励源瞬变电磁方法,通过构建正演模型,以甘肃魏家地煤矿含水采空区探测为例,比较了传统大定源回线、单激励源及多激励源电性源瞬变电磁的勘查效果;经钻孔验证,多激励源瞬变电磁法在研究区勘查效果更好。研究结果为邻区及类似地区煤矿采空区探测提供了技术支撑和可供参考的范例。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙海川
王文忠
李治中
刘永亮
关键词 含水采空区多激励源瞬变电磁单激励源瞬变电磁大定源回线正演反演    
Abstract

The large fixed-source loop is a commonly used device in the transient electromagnetic method (TEM). However, moving its transmitter requires a lot of manpower and time, greatly reducing the efficiency of the method. The electrical source TEM enjoys the advantages of large detection depth, less terrain restriction, and high efficiency. However, its signal intensity severely attenuated and it has a low signal-to-noise ratio in the case of a large offset, which limit its detection precision to a certain extent. To achieve high-precise geological exploration, this study built a forward model using the multi-excitation source TEM. With the detection of a water-bearing goaf of the Weijiadi coal mine in Gansu Province as a case study, this study compared the exploration performance of the multi-excitation source TEM with that of the conventional large fixed-source loop and the single-excitation source TEM. As verified by drilling, the multi-excitation source TEM can deliver better exploration performance in the study area. The results of this study can provide technical support and a reference for goaf detection in adjacent and similar areas.

Key wordsgoaf    multi-excitation source TEM    single-excitation source TEM    large fixed-source loop    forward modeling    inversion
收稿日期: 2021-11-19      修回日期: 2022-07-11      出版日期: 2022-10-20
ZTFLH:  P631  
基金资助:甘肃煤田地质局科研项目“多激励源瞬变电磁法方法技术在精细地质调查中的应用研究 ”(2017119)
作者简介: 孙海川(1985-),男,宁夏银川人,硕士,高级工程师,现主要从事地质勘查与研究工作。Email:774617824@qq.com
引用本文:   
孙海川, 王文忠, 李治中, 刘永亮. 多激励源瞬变电磁探测方法在煤矿采空区的应用[J]. 物探与化探, 2022, 46(5): 1306-1314.
SUN Hai-Chuan, WANG Wen-Zhong, LI Zhi-Zhong, LIU Yong-Liang. Application of the multi-excitation source transient electromagnetic method in the coal mine goaves. Geophysical and Geochemical Exploration, 2022, 46(5): 1306-1314.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.1622      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I5/1306
Fig.1  多激励源Yee晶胞加载方式示意
Fig.2  模型示意
Fig.3  单激励场源测线32各分量多测道曲线
Fig.4  多激励场源(电流方向相反)测线32各分量多测道曲线
Fig.5  多激励场源(电流方向相同)测线32各分量多测道曲线
Fig.6  研究区位置示意
Fig.7  采空区塌陷垂直“三带”示意
地层 岩性 视电阻率/(Ω·m)
第四系 黄土、砂质黏土、砂砾石 >60
侏罗系 泥岩、粗砂岩、砂砾岩及煤层 10~60
三叠系 中、粗砾砂岩,局部含砾 >150
Table 1  研究区地层电阻率特征
Fig.8  物探工程布置
Fig.9  发射源与测区位置示意
工作装置 发射
边长/m
发射
电流/A
发射
频率/Hz
偏移距/m
大定源回线 600×600 15 8.333 ≤200
单激励源 AB:1500 15 8.333 1000
多激励源 AB:1500
CD:1500
15 8.333 1000
Table 2  不同发射源的观测参数
Fig.10  资料处理流程
Fig.11  实测视电阻率曲线(a)及其反演深度模型(b)
Fig.12  280线(左)、340线(右)物探综合剖面
Fig.13  高程1 000 m(a)和1 050 m(b)电阻率等值线平面
[1] 钟声, 王士党. 地面与井下瞬变电磁法联合探测煤矿富水区域[J]. 物探与化探, 2016, 40(3):635-638.
[1] Zhong S, Wang S D. The application of combined ground and underground coal mine transient electronmagnetic methods to the exploration of water-rich area[J]. Geophysical and Geochemical Exploration, 2016, 40(3):635-638.
[2] 郭伟立, 薛国强, 周楠楠, 等. 利用瞬变电磁法监测煤矿含水采空区[J]. 物探与化探, 2012, 36(S):114-118.
[2] Guo W L, Xue G Q, Zhou N N, et al. Monitoring water-filled goaf by using TEM technology[J]. Geophysical and Geochemical Exploration, 2012, 36(S):114-118.
[3] 郭文波, 宋建平, 曹捷, 等. 回线源瞬变电磁法在地质灾害调查中的应用[J]. 物探与化探, 2006, 30(4):327-329.
[3] Guo W B, Song J P, Cao J, et al. Application of loop source transient electromagnetic method in geological hazard investigation[J]. Geophysical and Geochemical Exploration, 2006, 30(4):327-329.
[4] 黄立军, 陆桂福, 刘瑞德. 电性源瞬变电磁法在油田上的应用研究[J]. 物探与化探, 2005, 29(4):316-318.
[4] Huang L J, Lu G F, Liu R D. The application of grounded source transient electromagnetic method to the oil field[J]. Geophysical and Geochemical Exploration, 2005, 29(4):316-318.
[5] 薛国强, 闫述, 底青云, 等. 多道瞬变电磁法(MTEM)技术分析[J]. 地球科学与环境学报, 2015, 37(1):94-100.
[5] Xue G Q, Yan S, Di Q Y, et al. Technical analysis of multi-transient electromagnetic method[J]. Journal of Science and Envirorment, 2015, 37(1):94-100.
[6] 薛国强, 武欣, 李海, 等. 多道瞬变电磁法(MTEM)国外研究进展[J]. 地球物理学进展, 2016, 31(5):2187-2191.
[6] Xue G Q, Wu X, Li H, et al. Progress of multi-transient electromagnetic method in abroad[J]. Progress in Geophysics, 2016, 31(5):2187-2191.
[7] 薛国强, 底青云, 王若, 等. 多道瞬变电磁法资料处理方法技术综述[J]. 地球物理学进展, 2020, 35(1):211-215.
[7] Xue G Q, Di Q Y, Wang R, et al. Overview on data progressing methods of multi-transient electromagnetic method[J]. Progress in Geophysics, 2020, 35(1):211-215.
[8] 张莹莹. 电性源瞬变电磁法综述[J]. 物探与化探, 2021, 45(4):809-823.
[8] Zhang Y Y. Review on the study of grounded-source transient electromagnetic method[J]. Geophysical and Geochemical Exploration, 2021, 45(4):809-823.
[9] 张莹莹, 李貅, 姚伟华, 等. 多辐射场源地空瞬变电磁法多分量全域视电阻率定义[J]. 地球物理学报, 2015, 58(8):2745-2758.
[9] Zhang Y Y, Li X, Yao W H, et al. Multi-component full field apparent resistivity definition of multi-source ground-airborne transient electronmagnetic method with galvanic sources[J]. Chinese Journal Geophysics, 2015, 58(8):2745-2758.
[10] 李貅, 胡伟明, 薛国强. 多辐射源地空瞬变电磁响应三维数值模拟研究[J]. 地球物理学报, 2021, 64(2):716-723.
[10] Li X, Hu W M, Xue G Q. 3D modeling of multi-radiation source semi-airborne transient electromagnetic response[J]. Chinese Journal Geophysics, 2021, 64(2):716-723.
[11] 张莹莹. 地空瞬变电磁法逆合成孔径成像方法研究[D]. 西安: 长安大学, 2016.
[11] Zhang Y Y. Study on inverse synthetic aperture imaging ground-airborne transient electromagnetic method[D]. Xi’an: Changan University, 2016.
[12] 王文忠. 多激励源瞬变电磁法方法技术在精细地质调查中的应用研究报告[R]. 甘肃煤炭地质勘查院, 2020.
[12] Wang W Z. Research report on application of multi-excitation source transient electromagnetic method technique in fine geological survey[R]. Gansu Coal Geological Prospecting Institute, 2020.
[13] 周建美, 刘文韬, 李貅, 等. 双轴各向异性介质中回线源瞬变电磁三维拟态有限体积正演算法[J]. 地球物理学报, 2018, 63(1):368-378.
[13] Zhou J M, Liu W T, Li X, et al. Research on the 3D mimetic finite volume method for loop-source TEM response in biaxial anisotropic formation[J]. Chinese Journal Geophysics, 2018, 63(1):368-378.
[14] 何俊林. 魏家地煤矿小窑采空区及水文地质普查电法勘探报告[R]. 甘肃煤田地质局一四九队, 2015.
[14] He J L. Electrical exploration report of small mine goaf and hydrogeological survey in Weijiadi coal mine[R]. Team 149, Gansu Coal Geology Bureau, 2015.
[15] 张淑婷. 地球物理勘查技术在探测煤矿采空区中的应用[J]. 物探与化探, 2012, 36(S):83-87.
[15] Zhang S T. The application of geophysical exploration technology to the detection of coal mine goaf[J]. Geophysical and Geochemical Exploration, 2012, 36(S):83-87.
[16] 薛永军, 武秀芳, 仲丛明, 等. 煤矿小窑采空区及塌陷区的地球物理勘查[J]. 物探与化探, 2012, 36(S):111-113.
[16] Xue Y J, Wu X F, Zhong C M, et al. Geophysical exploration in goaf and collapse areas in small coal pits[J]. Geophysical and Geochemical Exploration, 2012, 36(S): 111-113.
[17] 陈卫营, 薛国强. 电性源瞬变电磁对薄层的探测能力[J]. 物探与化探, 2015, 39(4):775-779.
[17] Chen W Y, Xue G Q. Detection capability of grounded electric source TEM for thin layer[J]. Geophysical and Geochemical Exploration, 2015, 39(4):775-779.
[1] 周钟航, 张莹莹. 山峰对电性源地面瞬变电磁响应的影响及校正方法[J]. 物探与化探, 2023, 47(5): 1236-1249.
[2] 邢涛, 王垚, 李建慧. 基于B样条插值的瞬变电磁响应一维精确计算[J]. 物探与化探, 2023, 47(5): 1316-1325.
[3] 吴国培, 张莹莹, 赵华亮, 周钟航, 李医滨. 基于横向约束的中心回线瞬变电磁一维反演[J]. 物探与化探, 2023, 47(4): 1024-1032.
[4] 丁志军, 罗维斌, 连伟章, 张星, 何海颦. 基于两步变异差分进化算法的激电测深一维反演[J]. 物探与化探, 2023, 47(4): 1033-1039.
[5] 刘豹, 杨宇山, 刘天佑. 铜绿山矿田成矿远景预测及三维地质模型[J]. 物探与化探, 2023, 47(4): 906-915.
[6] 张阳阳, 杜威, 王芝水, 缪旭煌, 张翔. 基于Lévay飞行的粒子群算法在大地电磁反演中的应用[J]. 物探与化探, 2023, 47(4): 986-993.
[7] 许第桥, 李茂. 二连盆地宽频大地电磁法数据精细反演处理研究——以满都拉图地区的数据为例[J]. 物探与化探, 2023, 47(4): 994-1001.
[8] 陈晓, 曾志文, 邓居智, 张志勇, 陈辉, 余辉, 王彦国. 基于不等式和Gramian约束的MT和重力正则化联合反演[J]. 物探与化探, 2023, 47(3): 575-583.
[9] 张瑾爱, 杨渊, 张林. 基于重力异常的镇安西部隐伏岩体空间分布规律研究[J]. 物探与化探, 2023, 47(3): 618-627.
[10] 陈子龙, 王海燕, 郭华, 王光文, 赵玉莲. 地震全波形反演研究进展与应用现状综述[J]. 物探与化探, 2023, 47(3): 628-637.
[11] 张入化, 张洞君, 黄建平, 苟其勇, 周嘉妮. 基于LSCG法和波数补偿的频率域二维地震正演模拟方法[J]. 物探与化探, 2023, 47(2): 384-390.
[12] 王莉利, 杜功鑫, 高新成, 王宁, 王维红. 基于U-Net网络的FWI地震低频恢复方法[J]. 物探与化探, 2023, 47(2): 391-400.
[13] 王仕兴, 何可, 尹小康, 魏栋华, 赵思为, 郭明. 半航空瞬变电磁一维聚焦反演研究[J]. 物探与化探, 2023, 47(2): 410-419.
[14] 任宪军, 李钟, 马应龙, 董萍, 田行达. 地震分频迭代反演在薄层河道砂体预测中的应用[J]. 物探与化探, 2023, 47(2): 420-428.
[15] 邢文军, 曹思远, 陈思远, 孙耀光. 基于谱反演方法的叠后纵波阻抗反演[J]. 物探与化探, 2023, 47(2): 429-437.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com