Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (4): 988-998    DOI: 10.11720/wtyht.2022.1398
  生态地质调查 本期目录 | 过刊浏览 | 高级检索 |
湖北红安县生态地质调查土壤重金属分布特征及生态风险评价
居字龙(), 秦志军, 万翔(), 袁航, 张小波, 王登
湖北省地质调查院,湖北 武汉 430034
Accessing the distribution and ecological risks of heavy metals in soil in Hong’an County, Hubei Province through ecological geological surveys
JU Zi-Long(), QIN Zhi-Jun, Wan Xiang(), YUAN Hang, ZHANG Xiao-Bo, WANG Deng
Hubei Geological Survey, Wuhan 430034, China
全文: PDF(7362 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

为探索湖北省红安县土壤重金属空间分布特征,选定金沙湖和觅儿寺工业园两个重点调查区,系统采集表层及垂向剖面土壤样品,测定Cu、Pb、Zn、Cr、Ni、Cd、As和Hg含量。采用单因子污染指数法和潜在生态危害指数法评价重金属元素空间分布特征及生态风险。研究表明:调查区上述8种重金属元素平均含量分别为21.48×10-6、21.75×10-6、63.60×10-6、53.24×10-6、20.25×10-6、0.13×10-6、5.44×10-6和0.04×10-6,其中Cu、Cr、Ni和Cd污染积累相对富集,以轻微污染为主;重金属元素分布规律特征明显,轻微污染集中于高桥—永佳河基性—超基性混杂岩带和觅儿寺工业园周边,重度污染仅存在于八里湾东北侧零散锰钴矿化点, Pb和Hg含量在表层土壤富集,深层减少, Cr和Ni则在深层土壤富集,而表层减少,其他4种元素规律不明显; Cd和Hg单元素潜在生态风险较高,基于这两种元素的综合生态风险评价认为金沙湖城关镇周边、基性—超基性混杂岩带、觅儿寺工业园周边和八里湾镇锰钴矿化带为中等潜在生态风险地区,需加强生态监督保护。该研究成果可为红安县后期生态治理提供科学依据,并为其他生态地质调查的土壤工作提供借鉴意义。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
居字龙
秦志军
万翔
袁航
张小波
王登
关键词 生态地质土壤重金属分布特征生态风险    
Abstract

This study selected the Jinsha Lake and the Miersi Industry Park as key survey areas to study the distribution of heavy metals in soil in Hong’an County, Hubei Province. Samples were collected from surface soil and vertical soil profiles to assay the contents of eight heavy metals, i.e., Cu, Pb, Zn, Cr, Ni, Cd, As, and Hg. Both the single factor pollution index method and the potential ecological hazard index method were used to assess the distribution and the ecological risk of heavy metals. The study results are as follows:The average contents of the above eight heavy metals were 21.48×10-6, 21.75×10-6, 63.60×10-6, 53.24×10-6, 20.25×10-6, 0.13×10-6, 5.44×10-6, and 0.04×10-6,respectively. The cumulative Cu, Cr, Ni, and Cd are relatively enriched in the soil and their pollution is slight. The heavy metals show distinct distribution patterns. Minor pollution exists in the Gaoqiao-Yongjiahe basic-ultrabasic melange zone and around the Miershi Industrial Park, while severe pollution exists in Mn-Co mineralized points scattered in the northeastern Baliwan. Pb and Hg are enriched in the surface layer but decrease in the deep layer, Cr and Ni show an inverse trend, while other elements show indistinct distribution patterns. Cd and Hg have high potential ecological risk individually in the soil in the surveyed areas. The comprehensive ecological risk assessment based on Cd and Hg shows that the surrounding area of the Jinsha Lake Chengguan Town, the basic-ultrabasic melange zone, the surrounding area of the Miersi Industrial Park, and the Baliwan manganese-cobalt mineralization zone are areas with moderate potential ecological risks, where ecological supervision and protection should be strengthened. This study can provide a scientific basis for later ecological management in Hongan. It also serves as a good soil reference for other ecological geological surveys.

Key wordsecological geology    soil    heavy metal    distribution characteristic    ecological risk
收稿日期: 2021-07-16      修回日期: 2021-12-24      出版日期: 2022-08-20
ZTFLH:  P632  
基金资助:湖北省地质局项目“武汉城市群健康地质调查与风险评价”(MSDZ202211);“湖北省红安县生态地质调查(方法示范)”([2017]13号)
通讯作者: 万翔
作者简介: 居字龙(1988-),男,硕士,工程师,就职于湖北省地质调查院,从事土壤及生态地质调查工作。Email: zilongcug@163.com
引用本文:   
居字龙, 秦志军, 万翔, 袁航, 张小波, 王登. 湖北红安县生态地质调查土壤重金属分布特征及生态风险评价[J]. 物探与化探, 2022, 46(4): 988-998.
JU Zi-Long, QIN Zhi-Jun, Wan Xiang, YUAN Hang, ZHANG Xiao-Bo, WANG Deng. Accessing the distribution and ecological risks of heavy metals in soil in Hong’an County, Hubei Province through ecological geological surveys. Geophysical and Geochemical Exploration, 2022, 46(4): 988-998.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.1398      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I4/988
Fig.1  研究区概况及采样点分布
元素 土地
类型
土壤环境质量标准(GB 15168—2018) 湖北省
背景
[21,25]
pH≤5.5 5.5<pH
≤6.5
6.5<pH
≤7.5
pH>7.5
Cu 其他 50 60 100 100 30.7
果园 150 150 200 200
Pb 其他 70 90 120 170 26.7
水田 80 100 140 240
Zn 所有 200 200 250 300 83.6
Cr 其他 150 150 200 250 86
水田 250 250 300 350
Ni 所有 60 70 100 190 26.9
Cd 其他 0.3 0.3 0.3 0.6 0.17
水田 0.3 0.4 0.6 0.8
As 其他 40 40 30 25 12.3
水田 30 30 25 20
Hg 其他 1.3 1.8 2.4 3.4 0.08
水田 0.5 0.5 0.6 1
Table 1  单因子指数评价重金属元素含量参考值
Fig.2  调查区土壤重金属含量统计
重金属 以湖北省土壤背景值为参考 以GB15618—2018为参考
超标个数 超标率 单因子污染指数
最小值~最大值(平均值)
超标个数 超标率 单因子污染指数
最小值~最大值(平均值)
Cu 107 14.59% 1~5.21/(1.37) 10 1.48% 1.07~3.2/(1.43)
Pb 79 10.81% 1~8.31/(1.26) 1 0.14% 3.1
Zn 170 23.11% 1~13.77/(1.28) 1 0.27% 1.41~5.75/(3.58)
Cr 88 11.89% 1~2.95/(1.47) 19 2.57% 1~1.69/(1.26)
Ni 158 21.49% 1~9.03/(1.6) 15 2.16% 1.04~4.05/(1.42)
Cd 107 14.59% 1~191.17/(2.75) 14 2.03% 1~9.33/(8.66)
As 32 4.46% 1~6.17/(1.63) 1 0.27% 1.02~1.9/(1.46)
Hg 65 8.78% 1~7.68/(1.57) 0 0
Table 2  调查区土壤重金属含量超标情况统计
Fig.3  调查区重金属含量超标点污染评价
Fig.4  金沙湖调查区重金属污染评价及超标点分布
Fig.5  觅儿寺调查区重金属污染程度及超标点分布
项目 Cu Pb Zn Cr Ni Cd As Hg
最小值/10-6 9.35 8.27 41.70 7.25 4.48 0.03 2.26 0.004
最大值/10-6 90.40 52.80 234.00 122.00 69.60 0.71 43.30 0.13
平均值/10-6 32.87 22.73 97.58 53.82 27.07 0.22 13.46 0.04
变异系数/% 81.27 48.10 61.91 60.41 73.11 101.51 78.07 78.43
湖北省背景值/10-6 30.70 26.70 83.60 86.00 26.90 0.17 12.30 0.08
背景值倍数 1.07 0.85 1.17 0.63 1.01 1.32 1.09 0.50
Table 3  垂直剖面土壤重金属含量统计
Fig.6  垂直剖面土壤重金属含量
Fig.7  研究区土壤重金属主成分分析
单项生态风险因子(Ei) 综合生态风险指数(RI)
等级 得分 等级 得分
低生态风险 <40 低生态风险 <150
中等生态风险 40~80 中等生态风险 150~300
较高生态风险 80~160 较高生态风险 300~600
高生态风险 >160 高生态风险 >600
Table 4  重金属潜在生态风险分级评价标准
Fig.8  研究区生态风险分布
[1] 徐夕博, 吕建树, 徐汝汝. 山东省沂源县土壤重金属来源分布及风险评价[J]. 农业工程学报, 2018, 34(9):216-223.
[1] Xu X B, Lyu J S, Xu R R. Source spatial distribution and risk assessment of heavy metals in Yiyuan county of Shandong Province[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(9):216-223.
[2] 吕建树, 张祖陆, 刘洋, 等. 日照市土壤重金属来源解析及环境风险评价[J]. 地理学报, 2012(7):109-122.
[2] Lyu J S, Zhang Z L, Liu Y, et al. Sources identification and hazardous risk delineation of heavy metals contamination in Rizhao City[J] Acta Geographica Sinica, 2012(7):109-122.
[3] 戴彬, 吕建树, 战金成, 等. 山东省典型工业城市土壤重金属来源、空间分布及潜在生态风险评价[J]. 环境科学, 2015, 36(2):507-515.
[3] Dai B, Lyu J S, Zhan J C, et al. Assessment of sources,spatial distribution and ecological risk of heavy metals in soils in a typical industry-based city of Shandong Province,Eastern China[J] .Environmental Science, 2015, 36(2):507-515.
[4] 周亚龙, 郭志娟, 王成文, 等. 云南省镇雄县土壤重金属污染及潜在生态风险评估[J]. 物探与化探, 2019, 43(6):1358-1366.
[4] Zhou Y L, Guo Z J, Wang C W, et al. Assessment of heavy metal pollution and potential ecological risks of soils in Zhenxiong County,Yunnan Province[J]. Geophysical and Geochemical Exploration, 2019, 43(6):1358-1366..
[5] 常文静, 李枝坚, 周妍姿, 等. 深圳市不同功能区土壤表层重金属污染及其综合生态风险评价[J]. 应用生态学报, 2020, 31(3):999-1007.
doi: 10.13287/j.1001-9332.202003.036
[5] Chang W J, Li Z J, Zhou Y Z, et al. Heavy metal pollution and comprehensive ecological risk assessment of surface soil in different functional areas of Shenzhen,China[J]. Chinese Journal of Applied Ecology, 2020, 31(3):999-1007.
[6] 施宸皓, 王云燕, 柴立元, 等. 洞庭湖湿地周围表层土壤重金属污染及其人体健康风险评价[J]. 中国有色金属学报, 2020, 30(1):150-161
[6] Shi C H, Wang Y Y, Chai L Y, et al. Assessment of heavy metal and human health risk in surface soils around Dongting Lake wetland,China[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(1):150-161.
[7] 王宇珊, 刘成坚, 陈晓燕, 等. 垃圾焚烧厂周边土壤的重金属污染风险评价[J]. 华南师范大学学报:自然科学版, 2020, 52(5):57-64.
[7] Wang Y S, Liu C J, Chen X Y, et al. Pollution risk assessments of heavy metals in soils around a municipal solid waste incinerator[J]. Journal of South China Normal University:Natural Science Edition, 2020, 52(5):57-64.
[8] 郭平, 谢忠雷, 李军, 等. 长春市土壤重金属污染特征及其潜在生态风险评价[J]. 地理学报, 2005, 25(1):108-112.
[8] Guo P, Xie Z L, Li J, et al. Specificity of heavy metal pollution and the ecological hazard in urban soils of Changchun City[J]. Scientia Geographica Sinica, 2005, 25(1):108-112.
[9] 聂洪峰, 肖春蕾, 戴蒙, 等. 生态地质调查工程进展与主要成果[J]. 中国地质调查, 2021, 8(1):1-12.
[9] Nie H F, Xiao C L, Dai M, et al. Progresses and main achievements of eco-geological survey project[J] Geological Survey of China, 2021, 8(1):1-12.
[10] 陈树旺, 邢德和, 丁秋红, 等. 生态地质调查评价——以辽宁铁岭地区为例[J]. 地质与资源, 2012, 21(6):540-545.
[10] Chen S W, Xing D H, Ding Q H, et al. Eco-geological survey and evaluation:A case study of Tieling area,Liaoning Province[J]. Geology and Resources, 2012, 21(6):540-545.
[11] 李金发. 为生态文明服务的地质调查工作[J]. 资源环境与工程, 2014, 28(1):1-4.
[11] Li J F. Geological survey for ecological civilization[J]. Resources Environment and Engineering, 2014, 28(1):1-4.
[12] 徐黎. 生态环境地质调查进展与展望[J]. 世界有色金属, 2019, 1(3):248-250.
[12] Xu L. Progress and prospect of eco-environmental geological survey[J]. World Nonferrous Metals, 2019, 1(3):248-250.
[13] 刘洪, 黄瀚霄, 欧阳渊, 等. 基于地质建造的土壤地质调查及应用前景分析——以大凉山区西昌市为例[J]. 沉积与特提斯地质, 2020, 40(1):91-105.
[13] Liu H, Huang H X, Ouyang Y, et al. Soils geologic investigation in Daliangshan,Xichang,Sichuan[J]. Sedimentary Geology and Tethyan Geology, 2020, 40(1):91-105.
[14] 王京彬, 卫晓锋, 张会琼, 等. 基于地质建造的生态地质调查方法——以河北省承德市国家生态文明示范区综合地质调查为例[J]. 中国地质, 2020, 47(6):1611-1624.
[14] Wang J B, Wei X F, Zhang H Q, et al. The eco-geological survey based on geological formation,exemplified by integrated geological survey of National Ecological Civilization Demonstration Area in Chengde City,Hebei Province[J]. Geology in China, 2020, 47(6):1611-1624.
[15] 严明书, 黄剑, 何忠庠, 等. 地质背景对土壤微量元素的影响——以渝北地区为例[J]. 物探与化探, 2018, 42(1):199-205,219.
[15] Yan M S, Huang J, He Z Y, et al. The influence of geological background on trace elements of soil:A case study of Yubei area[J]. Geophysical and Geo-chemical Exploration, 2018, 42(1) :199-205,219.
[16] 朱彩云, 白洁润, 顾国洪. 母质演化与质地对土壤养分的影响[J]. 现代农业, 2014, 1(6):32-33.
[16] Zhu C Y, Bai J Y, Gu G H. Effects of parent material evolution and texture on soil nutrients[J]. Modern Agriculture, 2014, 1(6):32-33.
[17] 张腾蛟, 刘洪, 欧阳渊, 等. 中高山区土壤成土母质理化特征及主控因素初探——以西昌市为例[J]. 沉积与特提斯地质, 2020, 40(1):106-114.
[17] Zhang T J, Liu H, Ouyang Y, et al. A preliminary discussion on the physical and chemical characteristics and main controlling factors of soil and parent material in the middle and high mountain area-Take Xichang as an example[J]. Sedimentary Geology and Tethyan Geology, 2020, 40(1):106-114.
[18] 湖北省红安县地方志编纂委员会. 红安县志 1990-2007[M]. 武汉: 武汉大学出版社, 2016.
[18] The Compilation Committee of Local Chronicles of Hong'an County,Hubei. Hong'an County records 1990-2007[M]. Wuhan: Wuhan University Press, 2016
[19] 周豪. 西大别康家湾构造混杂岩带锆石U-Pb年代学、地球化学特征及其地质意义[D]. 北京: 中国地质大学(北京), 2017.
[19] Zhou H. Geochronology and geochemistry of the Kanjiawan tectonic melange belt of Western Dabie and it is geological significance[D]. Beijing: China University of Geoscience(Beijing), 2017.
[20] 杨振, 丁启燕, 宋万营. 湖北省土壤重金属污染健康风险评价[J]. 国外医学:医学地理分册, 2018, 39(3):181-187.
[20] Yang Z, Ding Q Y, Song W Y. Assessment on health risk of heavy metal pollution in soil of Hubei Province[J]. Foreign Medical Sciences Section of Medgeography, 2018, 39(3):181-187.
[21] 黄赫, 周勇, 刘宇杰, 等. 基于多源环境变量和随机森林的农用地土壤重金属源解析——以襄阳市襄州区为例[J]. 环境科学学报, 2020, 40(12):4548-4558.
[21] Huang H, Zhou Y, Liu Y J, et al. Source analysis of heavy metals in farmland and based on environmental variables and random forest approach:District of Xiangzhou District in Xiangyang City[J]. Acta Scientiae Circumstantiae, 2020, 40(12):4548-4558.
[22] 孙厚云, 卫晓锋, 甘凤伟, 等. 承德市滦河流域土壤重金属地球化学基线厘定及其累积特征[J]. 环境科学, 2019, 40(8):3753-3763.
[22] Sun H Y, Wei X F, Gan F W. Determination of heavy metal geochemical baseline values and its accumulation in soils of the Luanhe River Basin,Chengde[J]. Environmental Science, 2019, 40(8):3753-3763.
[23] 黄凯, 张雪娇, 冯媛, 等. 河南某尾矿库土壤重金属污染特征及风险评价[J]. 环境影响评价, 2018, 40(1):78-83.
[23] Huang K, Zhang X J, Feng Y, et al. Pollution characteristics and risk assessment of heavy metals in a Tailing pond of Henan[J]. Environmental Impact Assessment, 2018, 40(1):78-83.
[24] 张慧, 郑志志, 马鑫鹏, 等. 哈尔滨市土壤表层重金属污染特征及来源辨析[J]. 环境科学研究, 2017, 30(10):1597-1606.
[24] Zhang H, Zeng Z Z, Ma X P, et al. Sources and pollution characteristics of heavy metals in surface soils of Harbin City[J]. Research of Environmental Sciences, 2017, 30(10) :1597-1606.
[25] 李向阳, 吴疆, 刘洪强. 鄂东南5种森林土壤重金属含量及污染评价[J]. 中南林业科技大学学报, 2019, 39(10):103-108.
[25] Li X Y, Wu J, Liu H Q. Concentration and ecology risk assessment of heavy metal in five forest soils in southeastern Hubei province[J]. Journal of Central South University of Forest & Technology, 2019, 39(10):103-108.
[26] 刘文慧, 李湘凌, 章康宁, 等. 基于改进Håkanson法的水稻根系土壤重金属生态风险评价[J]. 环境科学研究, 2020, 33(11):2613-2620.
[26] Liu W H, Li X L, Zhang K N, et al. Ecological risk assessment of heavy metals in paddy soil based on improved Hakanson method[J]. Research of Environmental Sciences, 2020, 33(11):2613-2620.
[27] 王玉军, 吴同亮, 周东美, 等. 农田土壤重金属污染评价研究进展[J]. 农业环境科学学报, 2017, 36(12):2365-2378.
[27] Wang Y J, Wu T L, Zhou D M, et al. Advances in soil heavy metal pollution evaluation based on bibliometrics analysis[J]. Journal of Agro-environment Science, 2017, 36(12):2365-2378.
[28] 阿吉古丽·马木提, 麦麦提吐尔逊·艾则孜, 艾尼瓦尔·买买提. 新疆焉耆县耕地土壤重金属垂直分布特征与污染风险[J]. 水土保持研究, 2018, 25(2):367-373.
[28] Ajiguli M, Maimaitituerxun A, Ainiwaer M. Vertical distribution characteristics and risk assessment of soil heavy metal contamination of farmlands in Yanqi County,Xinjiang[J]. Research of Soil and Water Conservation, 2018, 25(2):367-373.
[29] 麦麦提吐尔逊·艾则孜, 阿吉古丽·马木提, 艾尼瓦尔·买买提, 等. 博斯腾湖流域绿洲农田土壤重金属污染及潜在生态风险评价[J]. 地理学报, 2017, 72(9):1680-1694.
doi: 10.11821/dlxb201709012
[29] Maimaitituerxun A, Ajiguli M, Ainiwaer M, et al. Assessment of heavy metal pollution and its potential ecological risks of farmland soils of oasis in Bosten Lake Basin[J]. Scientia Geographica Sinica, 2017, 72(9):1680-1694.
[30] 刘昭, 周宏, 陈丽, 等. 鄂西典型锰矿区河流表层沉积物中重金属的空间分布特征与污染评价[J]. 安全与环境工程, 2020, 27(3):114-121.
[30] Liu Z, Zhou H, Chen L, et al. Spatial distribution characteristics and pollution assessment of heavy metals in river surface sediments in a manganese mining area,Western Hubei[J]. Safety and Environmental Engineering, 2020, 27(3):114-121.
[31] 任军, 刘方, 朱健, 等. 锰矿废渣区苔藓物种多样性及其重金属污染监测[J]. 安全与环境学报, 2020, 20(6):2398-2407.
[31] Ren J, Liu F, Zhu J, et al. Diversity of the bryophytes and heavy metal pollution monitoring in manganese ore waste area[J]. Journal of Safety and Environment, 2020, 20(6):2398-2407.
[32] 张炜华, 于瑞莲, 杨玉杰, 等. 厦门某旱地土壤垂直剖面中重金属迁移规律及来源解析[J]. 环境科学, 2019, 40(8):3765-3773.
[32] Zhang W H, Yu R L, Yang Y J, et al. Migration and source analysis of heavy metals in vertical soil profiles of the drylands of Xiamen City[J]. Environmental Science, 2019, 40(8):3765-3773.
[33] 苏耀明, 陈志良, 雷国建, 等. 多金属矿区土壤重金属垂向污染特征及风险评估[J]. 生态环境学报, 2016, 25(1):130-134.
[33] Su Y M, Chen Z L, Lei G J, et al. Vertical pollution characteristic and ecological risk assessment of heavy metal of soil profiles in polymetallic ore mine[J]. Ecology and Environmental Sciences, 2016, 25(1):130-134.
[34] 刘银飞, 孙彬彬, 贺灵. 福建龙海土壤垂向剖面元素分布特征[J]. 物探与化探, 40(4):713-721.
[34] Liu Y F, Sun B B, He L. Vertical distribution of elements in soil profiles in Longhai,Fujian Province[J]. Geophysical and Geochemical Exploration, 2016, 40(4) :713-721.
[35] 马溪平, 李法云, 肖鹏飞, 等. 典型工业区周围土壤重金属污染评价及空间分布[J]. 哈尔滨工业大学学报, 2007, 39(2):326-329.
[35] Ma X P, Li F Y, Xiao P F, et al. Assessment of heavy metal pollution and characteristics of its spatial distribution in soil near the typical industry area[J]. Journal of Harbin Institute of Technology, 2007, 39(2):326-329.
[36] 王关玉, 吴月照. 山东省土壤中元素含量与母质的关系[J]. 北京大学学报:自然科学版, 1992, 28(4):475-485.
[36] Wang G Y, Wu Y Z. Relationship between element content and parent material in soil of Shandong Province[J]. Journal of Peking University:Natural Science Edition, 1992, 28(4):475-485.
[37] 麦尔耶姆·亚森, 买买提·沙吾提, 尼格拉·塔什甫拉提, 等. 渭干河—库车河绿洲土壤重金属分布特征与生态风险评价[J]. 农业工程学报, 2017, 33(20):226-233.
[37] Maieryemu Y, Mamat S, Nigela T, et al. Distribution of heavy metal pollution and assessment of its potential ecological risks in Ugan-Kuqa River Delta of Xinjiang[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(20):226-233.
[38] 杨安, 邢文聪, 王小霞, 等. 西藏中部河流、湖泊表层沉积物及其周边土壤重金属来源解析及风险评价[J]. 中国环境科学, 2020, 40(10):4557-4567.
[38] Yang A, Xing W C, Wang X X, et al. Source and risk assessment of heavy metals in surface sediments of rivers,lakes and their surrounding soils in central Tibet[J]. China Environmental Science, 2020, 40(10):4557-4567.
[39] 宋波, 杨子杰, 张云霞, 等. 广西西江流域土壤镉含量特征及风险评估[J]. 环境科学, 2018, 39(4):446-458.
[39] Song B, Yang Z J, Zhang Y X, et al. Accumulation of Cd and its risks in the soils of the Xijiang River drainage basin in Guangxi[J]. Environmental Science, 2018, 39(4):446-458.
[1] 薛东旭, 刘诚, 郭发, 王俊, 徐多勋, 杨生飞, 张沛. 基于土壤氡气测量和可控源音频大地电磁的陕西眉县汤峪地热预测[J]. 物探与化探, 2023, 47(5): 1169-1178.
[2] 范海印, 宋蕊蕊, 于林松, 滕永波, 万方, 张秀文, 李圣玉, 赵闯. 鲁西北地区某典型化工园区地下水重金属污染特征及健康风险评价[J]. 物探与化探, 2023, 47(5): 1326-1335.
[3] 阙泽胜, 李冠超, 胡颖, 简锐敏, 刘兵. 基于GIS的土壤环境放射性水平和风险评价[J]. 物探与化探, 2023, 47(5): 1336-1347.
[4] 姜冰, 刘阳, 吴振, 张德明, 孙增兵, 马健. 高密地区灌溉水及土壤氟地球化学特征[J]. 物探与化探, 2023, 47(5): 1348-1353.
[5] 任蕊, 张志敏, 王晖, 陈继平, 乔新星, 梁东丽. 陕西关中土壤富硒标准研究与探讨——以小麦为例[J]. 物探与化探, 2023, 47(5): 1354-1360.
[6] 杨婵, 吴娟娟, 车旭曦, 岳思羽, 刘智峰, 宋凤敏. 汉江上游水体沉积物污染状况分析与评价[J]. 物探与化探, 2023, 47(5): 1361-1370.
[7] 田强国, 侯进凯, 杨在伟, 李立园. 河南省洛阳市土壤硒全量、有效性及形态分布特征[J]. 物探与化探, 2023, 47(5): 1371-1378.
[8] 李开富, 马欢, 张艳, 李威龙, 姜纪沂, 黄斌, 章龙管, 秦孟博. 基于时移电阻率法的平谷局部地区地下水时空特征研究[J]. 物探与化探, 2023, 47(4): 1002-1009.
[9] 袁玉婷, 刘雪敏, 王学求, 谭亲平. 硫、铅同位素对地表土壤微细粒金属全量测量异常的示踪——以水银洞卡林型隐伏金矿体为例[J]. 物探与化探, 2023, 47(4): 1083-1097.
[10] 刘庆宇, 马瑛, 程莉, 沈骁, 张亚峰, 苗国文, 黄强, 韩思琪. 青海东部表层土壤有机碳密度及其空间分布特征[J]. 物探与化探, 2023, 47(4): 1098-1108.
[11] 王惠艳, 彭敏, 马宏宏, 张富贵. 贵州典型重金属高背景区耕地土壤重金属生态风险评价[J]. 物探与化探, 2023, 47(4): 1109-1117.
[12] 多吉卫色, 次仁旺堆, 尼玛洛卓, 周鹏, 尼玛次仁. 西藏白朗县农田系统硒含量特征及影响因素[J]. 物探与化探, 2023, 47(4): 1118-1126.
[13] 包凤琴, 成杭新, 永胜, 周立军, 杨宇亮. 包头南郊农田土壤环境质量特征及农作物健康风险评价[J]. 物探与化探, 2023, 47(3): 816-825.
[14] 弓秋丽, 杨剑洲, 王振亮, 严慧. 海南省琼中县土壤—茶树中重金属的迁移特征及饮茶健康风险[J]. 物探与化探, 2023, 47(3): 826-834.
[15] 赵玉岩, 姜涛, 杨秉翰, 张泽宇, 李政赫, 李兵, 汤肖丹. 农田土壤—植物系统中钒的迁移富集规律[J]. 物探与化探, 2023, 47(3): 835-844.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com