Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (3): 570-575    DOI: 10.11720/wtyht.2022.1462
  《全域地球物理探测与智能感知》专栏 本期目录 | 过刊浏览 | 高级检索 |
地震勘探节点采集系统设计的要点
岩巍()
中国石油东方地球物理勘探有限责任公司,河北 涿州 072750
Key points of the design of a nodal acquisition system for seismic exploration
YAN Wei()
Equipment Service Department, BGP Inc., China National Petroleum Corporation, Zhuozhou 072750, China
全文: PDF(1469 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

为了对应长期低油价形势,地震勘探采集成本不断降低,同时为了满足越来越严格的环保要求,节点采集设备凭借其低成本、低采集脚印等优势不断推广。节点仪器的设计制造入门门槛偏低。市场上部分产品出于设计或成本等方面的考虑,在一些细节方面的缺失或忽视会造成地震勘探采集作业现场应用的困难。本文结合多年地震勘探设备使用经验,以及当前市场常见节点特性分析,在信号采集、测试功能、电路设计、存储、电池、外形、配套系统、质量控制及配套设备几个方面节点设计需要注意的细节进行阐述。避免由于设计原因出现信号采集的失真、耦合、EMC等问题。节点设备的采集质量完全依靠每一个节点设备在本地的独立工作性能和工作稳定性。而这两方面完全依靠厂家对于地震勘探采集信号和采集作业的理解,进而产生的设计。设计必须考虑为满足新形势下油气勘探开发需要,油气勘探开发重心不断向深层—超深层、强复杂地表更复杂领域转移,当前地震勘探采集更多地关注深层,要求对于信号拾取高精度、高分辨率,因此也就更需要提高对于弱信号、宽频信号的采集能力。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
岩巍
关键词 节点仪器EMC电路设计    
Abstract

The requirements for the design and manufacturing of nodal devices are relatively low. The most basic modules of a nodal device include controllers, acquisition circuits, GNSS timing circuits, geophones, batteries, interfaces, downloading cabinets, data downloading & compositing servers, optional testing circuits, signal generators, and QC manuals. As mature supply chains are available for all the above modules, manufacturers pay more attention to organically integrating the above modules into products that can stably work and meet the needs for the signal acquisition of seismic exploration. However, the absence or neglect of some details in some products on the market due to design or cost considerations will cause difficulties in the field application of seismic data acquisition. The data acquisition quality of the nodal devices relies entirely on the independent performance and stability of each nodal device, which further rely entirely on the manufacturers’ understanding of signal acquisition for seismic exploration and data acquisition operations and the resultant design. The requirements of oil and gas exploration and development in new situations must be considered in the design of nodal devices. The focus of oil and gas exploration and development is constantly shifting to deep and ultra-deep parts with more complex ground surfaces, and thus high precision and resolution are required for signal pickup. As a result, nodal devices should be more capable of acquiring weak signals and broadband signals, which cannot be compromised in the design. This paper elaborates on the fundamental details of signal acquisition, test functions, circuit design, storage, batteries, profile, auxiliary systems, quality control, and auxiliary devices in order to avoid problems such as signal distortion, coupling, and EMC.

Key wordsnodal device    EMC    circuit design
收稿日期: 2021-08-20      修回日期: 2022-04-01      出版日期: 2022-06-20
ZTFLH:  P631  
基金资助:东方地球物理公司局级项目“eSeis节点仪器高效作业技术与保障能力提升研究”(02-02-2021)
引用本文:   
岩巍. 地震勘探节点采集系统设计的要点[J]. 物探与化探, 2022, 46(3): 570-575.
YAN Wei. Key points of the design of a nodal acquisition system for seismic exploration. Geophysical and Geochemical Exploration, 2022, 46(3): 570-575.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.1462      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I3/570
项目 技术指标
A级 B级 C级
采样间隔/ms 按照用户需求计算确定 0.25,0.5,1,2,4 0.5,1,2
前放增益/dB 按照用户需求计算确定 0,12,24和36中至少有三档 0,12,24和36中至少有两档
道增益一致性 ≤0.5% ≤1.0% ≤3.0%
共模抑制比 ≥120 dB ≥100 dB ≥80 dB
总谐波畸变 ≤0.0001% ≤0.0005% ≤0.001%
动态范围 ≥120 dB ≥110 dB ≥95 dB
Table 1  地震仪器工作方式和参数
采样间隔/ms 前放增益/dB 最大等效输入噪音/μV
A级 B级 C级
0.25 0 ≤5 ≤20 ≤60
12 ≤1 ≤5 ≤15
24 ≤0.4 ≤1.3 ≤4
36 ≤0.1 ≤0.5 ≤1
0.5 0 ≤0.8 ≤3 ≤3
12 ≤0.2 ≤0.8 ≤1.5
24 ≤0.1 ≤0.35 ≤0.6
36 ≤0.06 ≤0.3 ≤0.5
1 0 ≤0.5 ≤2 ≤3
12 ≤0.15 ≤0.6 ≤0.75
24 ≤0.05 ≤0.2 ≤0.36
36 ≤0.04 ≤0.15 ≤0.3
2 0 ≤0.4 ≤1.5 ≤1.6
12 ≤0.1 ≤0.4 ≤0.45
24 ≤0.05 ≤0.2 ≤0.25
36 ≤0.04 ≤0.13 ≤0.22
4 0 ≤0.5 ≤1 ≤1.5
12 ≤0.07 ≤0.3 ≤0.4
24 ≤0.04 ≤0.15 ≤0.2
36 ≤0.03 ≤0.1 ≤0.15
Table 2  地震仪器等效输入噪声
Fig.1  基于MEMS的数字采集设备原理
Fig.2  高压线下相同位置同时间两个通道采集的记录
通道1—对检波器磁缸屏蔽;通道2——未对检波器磁缸屏蔽
Fig.3  各种节点内部排线和防潮示例
Fig.4  几种节点的耦合部分设计
[1] 易碧金, 袁宗军, 甘志强, 等. 浅谈节点地震仪器原理及一体化采集站设计要点[J]. 物探装备, 2021, 31(6):351-355,360.
[1] Yi B J, Yuan Z J, Gan Z Q, et al. Introduction to the principle of node seismic instruments and the design points of integrated acquisition stations[J]. Equipment for Geophysical Prospecting, 2021, 31(6):351-355,360.
[2] 施继承, 史子乐, 黄艳林, 等. 全球陆上节点地震数据采集设备现状与市场需求分析[J]. 物探装备 2019, 29(1):5-9.
[2] Shi J C, Shi Z L, Huang Y L, et al. The status and development trend of the global land nodal system[J]. Equipment for Geophysical Prospecting, 2019, 29(1):5-9.
[3] 夏颖, 刘卫平, 甘志强, 等. 节点仪器面临的挑战与发展趋势[J]. 物探装备, 2017, 27(5) :281-284.
[3] Xia Y, Liu W P, Gan Z Q, et al. Challenges and development trend of node instruments[J]. Equipment for Geophysical Prospecting, 2017, 27(5): 281-284.
[4] 易碧金, 穆群英, 王苏华, 等. 无线技术在地震仪器中的应用及展望[J]. 石油管材与仪器, 2015, 1(6):16-20.
[4] Yi B J, Mu Q Y, Wang S H, et al. Application and prospect of wireless technology in seismic instruments[J]. Petroleum Tubular Goods & Instruments, 2015, 1(6):16-20.
[5] 易碧金, 穆群英, 岩巍, 等. 地震勘探仪器发展的机遇、挑战及研发分析与展望[J]. 物探装备, 2016, 26(6): 351-357.
[5] Yi B J, Mu Q Y, Yan W, et al. Looking forward to seismic data acquisition system and it's technologies[J]. Equipment for Geophysical Prospecting, 2016, 26(6): 351-357.
[6] 国家能源局. 石油地震数据采集系统通用技术规范[S]. 中华人民共和国石油天然气行业标准,SY/T 5391—2018.
[6] National Energy Administration. General technical specification of the petroleum seismic data acquisition system[S]. Petroleum and Natural Gas Industry Standards of the People's Republic of China,SY/T 5391—2018.
[7] 岩巍, 李铮铮, 李正冉, 等. AccuSeis SL11数字检波器工作及测试原理[J]. 物探装备, 2019, 29(4):214-217.
[7] Yan W, Li Z Z, Li Z R, et al. Working and testing principle of AccuSeis SL11 digital geophone[J]. Equipment for Geophysical Prospecting, 2019, 29(4) 214-217.
[8] 易碧金, 仲明惟, 郭延伟, 等. 地震仪器性能指标对高精度勘探的影响[J]. 石油管材与仪器, 2020, 3(6):51-54.
[8] Yi B J, Zhong M W, Guo Y W, et al. The influence of seismic instrument performance indices on high precision exploration[J]. Petroleum Tubular Goods & Instruments, 2020, 3(6):51-54.
[9] 陈联青, 贾艳芳, 顾兴莉. GPS授时(网络)地震仪[J]. 物探装备, 2006, 16(S):1-7.
[9] Chen L Q, Jia Y F, Gu X L. GPS clock(network) seismograph[J]. Equipment for Geophysical Prospecting, 2006, 16(S): 1-7.
[10] 中国石油集团东方地球物理勘探有限责任公司. 井炮源激发同步系统的检验、使用与维护[S]. 东方地球物理勘探有限责任公司企业标准,Q/SY BGP K2740-2020.
[10] BGP,CNPC. Tset. Usage and maintenance for dynamite synchronization system[S]. Q/SY BGP K2740-2020
[11] 岩巍, 陈洪斌, 崔红英, 等. 基于时间槽分隔的井炮独立激发节点仪器采集技术及质控方法讨论[J]. 物探装备, 2020, 30(1):1-4.
[11] Yan W, Chen H B, Cui H Y, et al. Acquisition technology of independent source control based on time slot[J]. Equipment for Geophysical Prospecting, 2020, 30(1):1-4.
[12] 岩巍, 夏颖, 朱萍. Hawk节点仪器井炮作业优化[J]. 物探装备, 2016, 26(4) 226-228.
[12] Yan W, Xia Y, Zhu P. Operation optimization for node instrument[J]. Equipment for Geophysical Prospecting, 2016, 26(4) 226-228.
[13] 夏颖, 周德茂, 王艳, 等. GPS技术在地震勘探仪器中的应用及发展[J]. 物探装备 2010, 20(2): 78-82.
[13] Xia Y, Zhou D M, Wang Y, et al. The application and development of GPS technology in seismic exploration instrument[J]. Equipment for Geophysical Prospecting, 2010, 20(2): 78-82.
[1] 赵宝峰, 汪启年, 郭信, 官大维, 陈同刚, 方雯. 汝城盆地深部构造及地热资源赋存潜力——基于重力与AMT探测的认识[J]. 物探与化探, 2023, 47(5): 1147-1156.
[2] 何胜, 王万平, 董高峰, 南秀加, 魏丰丰, 白勇勇. 等值反磁通瞬变电磁法在城市地质调查中的应用[J]. 物探与化探, 2023, 47(5): 1379-1386.
[3] 常小鹏, 陈亮, 张翔, 张凌霄, 朱樟柳, 乔衍溢. 基于不同规范的重力仪双程往返零漂率计算分析[J]. 物探与化探, 2023, 47(5): 1307-1315.
[4] 吴嵩, 宁晓斌, 杨庭伟, 姜洪亮, 卢超波, 苏煜堤. 基于神经网络的探地雷达数据去噪[J]. 物探与化探, 2023, 47(5): 1298-1306.
[5] 周慧, 孙成禹, 刘英昌, 蔡瑞乾. 基于DC-UNet卷积神经网络的强噪声压制方法[J]. 物探与化探, 2023, 47(5): 1288-1297.
[6] 李栋, 朱博华. 基于上覆地层频率约束的匹配追踪强反射层分离方法[J]. 物探与化探, 2023, 47(5): 1261-1272.
[7] 席宇何, 王洪华, 王欲成, 吴祺铭. 基于速度移动窗的最小熵法在GPR逆时偏移中的应用[J]. 物探与化探, 2023, 47(5): 1250-1260.
[8] 周钟航, 张莹莹. 山峰对电性源地面瞬变电磁响应的影响及校正方法[J]. 物探与化探, 2023, 47(5): 1236-1249.
[9] 项诸宝, 张大洲, 朱德兵, 李明智, 熊章强. 不同骨料混凝土模型中瑞利波传播特性研究[J]. 物探与化探, 2023, 47(5): 1226-1235.
[10] 张帆, 冯国瑞, 戚庭野, 余传涛, 张新军, 王超宇, 杜孙稳, 赵德康. 瞬变电磁法勘探煤矿不同层间距双层积水采空区的可行性研究[J]. 物探与化探, 2023, 47(5): 1215-1225.
[11] 游希然, 张继锋, 石宇. 基于人工神经网络的瞬变电磁成像方法[J]. 物探与化探, 2023, 47(5): 1206-1214.
[12] 张利振, 孙成禹, 王志农, 李世中, 焦峻峰, 颜廷容. 面波信息约束的初至波走时层析反演方法[J]. 物探与化探, 2023, 47(5): 1198-1205.
[13] 薛东旭, 刘诚, 郭发, 王俊, 徐多勋, 杨生飞, 张沛. 基于土壤氡气测量和可控源音频大地电磁的陕西眉县汤峪地热预测[J]. 物探与化探, 2023, 47(5): 1169-1178.
[14] 黄彦庆. 川东北元坝地区致密砂岩多产状裂缝刻画[J]. 物探与化探, 2023, 47(5): 1189-1197.
[15] 杨海, 徐学义, 熊盛青, 杨雪, 高卫宏, 范正国, 贾志业. 凤太矿集区航空地球物理异常特征及找矿方向[J]. 物探与化探, 2023, 47(5): 1157-1168.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com