Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (1): 22-31    DOI: 10.11720/wtyht.2022.1190
  综述 本期目录 | 过刊浏览 | 高级检索 |
致密储层孔隙结构研究综述
陈秀娟1(), 刘之的1,2(), 刘宇羲3, 柴慧强3, 王勇3
1.西安石油大学 地球科学与工程学院,陕西 西安 710065
2.西安石油大学 陕西省油气成藏地质学重点实验室,陕西 西安 710065
3.中国石油长庆油田分公司 陇东页岩油开发项目部,甘肃 庆阳 745000
Research into the pore structure of tight reservoirs:A review
CHEN Xiu-Juan1(), LIU Zhi-Di1,2(), LIU Yu-Xi3, CHAI Hui-Qiang3, WANG Yong3
1. College of the Geoscience and Engineering,Xi'an Shiyou University,Xi'an 710065,China
2. Shaanxi Key Laboratory of Petroleum Accumulation Geology,Xi'an Shiyou University,Xi'an 710065,China
3. Longdong Department of Shale Oil Development Project in Changqing Oilfield,PetroChina,Qingyang 745000,China
全文: PDF(3536 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

国家对油气资源需求日益剧增的背景下,油气田勘探开发的主战场由常规转向非常规领域,致密油气成为当今及未来非常规油气勘探开发的热点和重点。我国致密储层多为陆相沉积,横向连续性差、纵向非均质性强、岩性复杂、物性变化大,致使致密储层的孔隙结构难以有效表征。储层孔隙结构不仅影响油气赋存,还严重制约着油气渗流和高效开采。为有针对性地分析致密储层的孔隙结构特征,系统调研了致密储层孔隙结构评价手段的相关文献资料,梳理了半渗透隔板等间接测定法、铸体薄片等直接观测法、数字岩心法之后,剖析了致密储层孔隙结构测井评价方法,并探讨了各方法的适用性和优缺点,进而基于该领域的研究现状展望了其发展趋势。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈秀娟
刘之的
刘宇羲
柴慧强
王勇
关键词 孔隙结构致密储层实验测试测井    
Abstract

With the increasing demand for oil and gas resources,the exploration and development of oil and gas fields have shifted from conventional to unconventional fields,and tight oil and gas reservoirs have become the current and future focus of the exploration and development of unconventional oil and gas.Most of the tight reservoirs in China are continental sediments with poor lateral continuity,strong vertical heterogeneity,complex lithology,and large changes in physical properties.All these make it difficult to effectively characterize the pore structure of tight reservoirs.The pore structure of reservoirs not only affects the occurrence of oil and gas but also seriously restricts the seepage and efficient exploitation of oil and gas.To analyze the pore structure characteristics of tight reservoirs in a targeted manner,this study systematically investigates relevant literature on the assessment methods of pore structure of tight reservoirs and organizes indirect measurement methods such as semi-permeable plate,direct observation methods such as casting thin sections,and digital core method.Moreover,it dissects the logging-based assessment methods of the pore structure of tight reservoirs,explores the applicability,advantages,and disadvantages of these methods,and further proposes the development trend of pore structure study based on the current status.

Key wordspore structure    tight reservoir    experimental test    well logging
收稿日期: 2021-04-12      修回日期: 2021-11-26      出版日期: 2022-02-20
ZTFLH:  P631.4  
基金资助:陕西省教育厅重点科学研究计划项目(20JY056);西安石油大学研究生创新与实践能力培养计划(YCS20112015)
通讯作者: 刘之的
作者简介: 陈秀娟(1995-),女,在读硕士,主要研究方向为测井地质学。Email: 1559572335@qq.com
引用本文:   
陈秀娟, 刘之的, 刘宇羲, 柴慧强, 王勇. 致密储层孔隙结构研究综述[J]. 物探与化探, 2022, 46(1): 22-31.
CHEN Xiu-Juan, LIU Zhi-Di, LIU Yu-Xi, CHAI Hui-Qiang, WANG Yong. Research into the pore structure of tight reservoirs:A review. Geophysical and Geochemical Exploration, 2022, 46(1): 22-31.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.1190      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I1/22
Fig.1  高压压汞与恒速压汞毛管压力曲线对比[14]
Fig.2  半渗透隔板毛管压力曲线[17]
Fig.3  离心机法测定毛管压力曲线
Fig.4  IUPAC的6种等温吸附线[20]
Fig.5  中子散射示意[23]
Fig.6  不同岩心铸体薄片[27]
Fig.7  X射线CT扫描示意[36]
Fig.8  不同岩样阴极发光鉴定[40]
Fig.9  真实岩心(a)与数字岩心(b)对比[46]
Fig.10  核磁共振T2谱图[52]
[1] 王振林, 毛志强, 孙中春, 等. 致密储层孔隙结构核磁共振测井评价方法[J]. 断块油气田, 2017,24(6):783-787.
[1] Wang Z L, Mao Z Q, Sun Z C, et al. Evaluation of pore structure using NMR logs for tight oil reservoirs[J]. Fault-Block Oil & Gas Field, 2017,24(6):783-787.
[2] Ning C X, Jiang Z X, Gao Z Y, et al. Quantitative evaluation of pore connectivity with nuclear magnetic resonance and high pressure mercury injection:A case study of the lower section of Es3 in Zhanhua sag[J]. Journal of China University of Mining & Technology, 2017,46(3):578-585.
[3] 查明, 苏阳, 高长海, 等. 致密储层储集空间特征及影响因素——以准噶尔盆地吉木萨尔凹陷二叠系芦草沟组为例[J]. 中国矿业大学学报, 2017,46(1):85-95.
[3] Zha M, Su Y, Gao C H, et al. Tight reservoir space characteristics and controlling factors:An example from Permian Lucaogou Formation in Jimsar Sag,Junggar Basin,northwest China[J]. Journal of China University of Mining & Technology, 2017,46(1):85-95.
[4] 于爽. 萨中开发区储层微观孔隙结构及非均质性研究[D]. 大庆:东北石油大学, 2016.
[4] Yu S. Study on the micro pore structure and heterogeneity of reservoir in central Saertu area[D]. Daqing:Northeast Petroleum University, 2016.
[5] 辛江. 甘谷驿油田顾屯区延长组长6油层组储层评价及控制因素分析[D]. 西安:长安大学, 2018.
[5] Xin J. Study on the comprehensive reservoir evaluation and controlling factors of Chang 6 oil set,Yanchang Formation in Gutun area,Ganguyi oilfield [D]. Xi'an:Chang'an University, 2018.
[6] 郝乐伟, 王琪, 唐俊. 储层岩石微观孔隙结构研究方法与理论综述[J]. 岩性油气藏, 2013,25(5):124-128.
[6] Hao L W, Wang Q, Tang J. Research progress of reservoir microscopic pore structure[J]. Lithologic Reservoirs, 2013,25(5):124-128.
[7] 伍鹏. 致密储层的孔隙结构及渗透率表征[D]. 北京:中国石油大学, 2017.
[7] Wu P. Characterization of pore structure and permeability prediction in tight oil reservoir[D]. Beijing:China University of Petroleum, 2017.
[8] 王超. 川西蓬莱镇组致密砂岩储层孔隙结构评价及气水微观赋存机理研究[D]. 成都:西南石油大学, 2017.
[8] Wang C. Pore structure evaluation and gas water microscopic occurrence mechanism of tight sandstone reservoir in Penglaizhen formation, Western Sichuan[D]. Chengdu:Southwest Petroleum University, 2018.
[9] 车荣华. 低渗透油层微观孔隙结构研究[D]. 大庆:东北石油大学, 2016.
[9] Che R H. Study on micro pore structure of low permeability reservoir[D]. Daqing:Northeast Petroleum University, 2016.
[10] Christos D T, Alkiviades C P. Characterization of the pore structure of reservoir rocks with the aid of serial sectioning analysis,mercury porosimetry and network simulation[J]. Advances in Water Resources, 2000,23(7):773-789.
doi: 10.1016/S0309-1708(00)00002-6
[11] Hao L, Tang J, Wang Q, et al. Fractal characteristics of tight sandstone reservoirs: A case from the Upper Triassic Yanchang Formation,Ordos Basin,China[J]. Journal of Petroleum Science and Engine, 2017,46:80-92.
[12] 吴松涛, 朱如凯, 李勋, 等. 致密储层孔隙结构表征技术有效性评价与应用[J]. 地学前缘, 2018,25(2):192-203.
[12] Wu S T, Zhu R K, Li X, et al. Evaluation and application of porous structure characterization technologies in unconventional tight reservoirs[J]. Earth Science Frontiers, 2018,25(2):191-203.
[13] Clarkson C R, Bustin R M. The effect of pore structure and gas pressure upon the transport properties of coal:A laboratory and modeling study[J]. Adsorption Rate Modeling Fuel, 1999,78(11):1345-1362.
[14] 赵华伟. 致密储层微观孔隙结构及渗流规律研究[D]. 北京:中国石油大学, 2017.
[14] Zhao H W. Study on micro scale pore structure and flow mechanism of tight oil sandstones[D]. Beijing:China University of Petroleum, 2017.
[15] 李鑫. 致密储层孔隙结构综合评价方法研究[D]. 北京:中国石油大学, 2017.
[15] Li X. Study on comprehensive evaluation method of pore structure of tight oil reservoir[D]. Beijing:China University of Petroleum, 2017.
[16] 张维. 基于常规测井资料的储层微观孔隙结构评价方法[D]. 大庆:东北石油大学, 2017.
[16] Zhang W. Microscopic pore structure evaluation method based on conventional logging data[D]. Daqing:Northeast Petroleum University, 2017.
[17] 张冲, 张超谟, 张占松, 等. 致密气储层岩心束缚水饱和度实验对比[J]. 天然气地球科学, 2016,27(2):352-358.
[17] Zhang C, Zhang C M, Zhang Z S, et al. Comparative experimental study of the core irreducible water saturation of tight gas reservoir[J]. Natural Gas Geoscience, 2016,27(2):352-358.
[18] 李霏, 陈铭谦, 赵御庭, 等. 岩石微观孔隙结构研究方法综述[J]. 地下水, 2019,41(6):112-114.
[18] Li F, Chen M Q, Zhao Y T, et al. A summary of research methods on microscopic pore structure of rocks[J]. Ground Water, 2019,41(6):112-114.
[19] 王伟明, 卢双舫, 田伟超, 等. 利用微观孔隙结构参数对辽河大民屯凹陷页岩储层分级评价[J]. 中国石油大学学报:自然科学版, 2016,40(4):12-19.
[19] Wang W M, Lu S F, Tian W C, et al. Liaohe oilfield shale reservoir quality grading with micropore evaluation parameters in Damintun depression[J]. Journal of China University of Petroleum:Edition of Natural Science, 2016,40(4):12-19.
[20] 李昊远. 氮气吸附法的致密砂岩孔隙结构分析[J]. 云南化工, 2019,46(12):87-90.
[20] Li H Y. Pore structure analysis of tight sandstone by nitrogen adsorption method[J]. Yunnan Chemical Technology, 2019,46(12):87-90.
[21] 戚灵灵, 王兆丰, 杨宏民, 等. 基于低温氮吸附法和压汞法的煤样孔隙研究[J]. 煤炭科学技术, 2012,40(8):36-39.
[21] Qi L L, Wang Z F, Yang H M, et al. Study on porosity of coal samples based on low temperature nitrogen adsorption method and mercury porosimetry[J]. Coal Science and Technology, 2012,40(8):36-39.
[22] 谢晓永, 唐洪明, 王春华, 等. 氮气吸附法和压汞法在测试泥页岩孔径分布中的对比[J]. 天然气工业, 2006,26(12):100-102.
[22] Xie X Y, Tang H M, Wang C H, et al. Contrast of nitrogen adsorption method and mercury porosimetry method in analysis of shale's pore size distribution[J]. Natural Gas Industry, 2006,26(12):100-102.
[23] 彭攀, 宁正福, 祁丽莎, 等. 致密储层孔隙结构研究方法概述[J]. 油气藏评价与开发, 2014,4(1):30-31.
[23] Peng P, Ning Z F, Qi L S, et al. Research method of pore structure in tight reservoir[J]. Reservoir Evaluation and Development, 2014,4(1):30-31.
[24] 张林浩, 徐嫣然, 孙梦迪, 等. 利用小角中子散射表征页岩闭孔结构与演化[J]. 沉积学报, 2021,39(2):1-22.
[24] Zhang L H, Xu Y R, Sun M D, et al. The structure and evolution of closed pores in shale determined by small angle neutron scattering[J]. Acta Sedimentologica Sinica, 2021,39(2):1-22.
[25] Ghiasi-Freez J, Soleimanpour I, Kadkhodaie-Ilkhchi A, et al. Semi-automated porosity identification from thin section images using image analysis and intelligent discriminant classifiers[J]. Computers & Geosciences, 2012,45:36-45.
doi: 10.1016/j.cageo.2012.03.006
[26] 张天付, 鲍征宇, 李东, 等. 页岩孔隙系统研究实验方法[J]. 地质科技情报, 2016,35(4):192-198.
[26] Zhang T F, Bao Z Y, Li D, et al. Information experimental methods for shale pore system[J]. Geological Science and Technology, 2016,35(4):192-198.
[27] 宋梓语. 塔里木油田克深地区砂岩酸化伤害实验研究[D]. 北京:中国石油大学, 2018.
[27] Song Z Y. Experimental analysis of sandstone formation damage with acidizing treatment in Keshen area(Tarim Oilfield)[D]. Beijing:China University of Petroleum, 2018.
[28] 胡勇. 致密砂岩气藏储层渗流机理研究[D]. 大庆:东北石油大学, 2016.
[28] Hu Y. Research on percolation mechanism of tight sandstone gas reservoir[D]. Daqing:Northeast Petroleum University, 2016.
[29] 常敏. 准噶尔盆地车排子地区白垩系清水河组储层特征研究[D]. 北京:中国石油大学, 2017.
[29] Chang M. Study on reservoir characteristics of the cretaceous Qingshuihe Formation in Chepaizi area,Junggar Basin[D]. Beijing:China University of Petroleum, 2017.
[30] Bonnet N, Herbin M, Vautrot P. Multivariate image analysis and segmentation in microanalysis[J]. Scanning Microsc, 1997,11(1):1-21.
[31] Zhang Y X, Ghanbarnezhad M, Rouzbeh, et al. Pore structure characterization of a shale sample using SEM images[C]//California:SPE Western Regional Meeting, 2019.
[32] Nadeau P H, Hurst A H. Application of back-scattered electron microscopy to the quantification of clay mineral microporosity in sandstones[J]. Journal of Sedimentary Research, 1991,61(6):921-925.
[33] Adrian C, Louis H, René B. Petrophysical properties of porous medium from petrographic image analysis data[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2001: 187.
[34] 王丽, 袁伟, 程光华, 等. 基于常规测井的储层孔隙结构评价新方法[J]. 海洋石油, 2018,38(2):58-65.
[34] Wang L, Yuan W, Cheng G H, et al. A new method of reservoir pore structure evaluation based on conventional logging data[J]. Offshore Oil, 2018,38(2):58-65.
[35] 陈超, 魏彪, 梁婷, 等. 一种基于工业CT技术的岩芯样品孔隙度测量分析方法[J]. 物探与化探, 2013,37(3):500-507.
[35] Chen C, Wei B, Liang T, et al. The application of industrial computation tomography (CT) to the analysis of core sample porosity[J]. Geophysical and Geochemical Exploration, 2013,37(3):500-507.
[36] 李易霖, 张云峰, 丛琳, 等. X-CT扫描成像技术在致密砂岩微观孔隙结构表征中的应用——以大安油田扶余油层为例[J]. 吉林大学学报:地球科学版, 2016,46(2):379-387.
[36] Li Y L, Zhang Y F, Cong L, et al. Application of X-CT scanning technique in the characterization of micro pore structure of tight sandstone reservoir:Taking the Fuyu oil layer in Daan oilfield as an example[J]. Journal of Jilin University:Earth Science Edition, 2016,46(2):379-387.
[37] Kazak A, Chugunov S, Chashkov A, et al. Integration of large-area scanning-electron-microscopy imaging and automated mineralogy petrography data for selection of nanoscale pore-space characterization sites[C]//SPE Res Eval & Eng, 2018,21:821-836.
[38] 尹海生. 古流向分析及储层评价技术在砂岩型铀矿床勘探中的应用[J]. 四川地质学报, 2005(3):131-135.
[38] Yin H S. The application of paleocurrent analysis and reservoir assessment technology to the exploration of sandstone-type uranium deposits[J]. Acta Geologica Sichuan, 2005(3):131-135.
[39] Galaup S, Liu Y, Cerepi A. New integrated 2D-3D physical method to evaluate the porosity and microstructure of carbonate and dolomite porous system[J]. Microporous and Mesoporous Materials, 2012,154(Special Issue:Characterization of Porous Solids IX):175-186.
doi: 10.1016/j.micromeso.2011.12.021
[40] 宋梓语. 塔里木油田克深地区砂岩酸化伤害实验研究[D]. 北京:中国石油大学, 2018.
[40] Song Z Y. Experimental analysis of sandstone formation damage with acidizing treatment in Keshen area(Tarim Oilfield)[D]. Beijing:China University of Petroleum, 2018.
[41] 姚军, 赵秀才, 衣艳静, 等. 数字岩心技术现状及展望[J]. 油气地质与采收率, 2005,12(6):52-54.
[41] Yao J, Zhao X C, Yi Y J, et al. The current situation and prospect on digital core technology[J]. Petroleum Geology and Recovery Efficiency, 2005,12(6):52-54.
[42] Coenen J, Tchouparova E, Jing X. Measurement parameters and resolution aspects of micro X-ray tomography for advanced core analysis[C]//Abu Dhab:Proceedings of International Symposium of the Society of Core Analysts, 2004:256-261.
[43] 李建胜, 王东, 康天合. 基于显微CT试验的岩石孔隙结构算法研究[J]. 岩土工程学报, 2010,32(11):1703-1708.
[43] Li J S, Wang D, Kang T H. Algorithmic study on rock pore structure based on micro-CT experiment[J]. Chinese Journal of Geotechnical Engineering, 2010,32(11):1703-1708.
[44] Wu K, Nunan N, Crawford J W, et al. An efficient Markov chain model for the simulation of heterogeneous soil structure[J]. Soil Sci. Soc. Am. J., 2004,68(2):346-351.
doi: 10.2136/sssaj2004.3460
[45] Dal F N, Delmas P, Duwig C, et al. Coupling X-ray microtomography and mercury intrusion porosimetry to quantify aggregate structures of a cambisol under different fertilisation treatments[J]. Soil and Tillage Research, 2012,119:13-21.
doi: 10.1016/j.still.2011.12.001
[46] Dernaika M, Efnik M S, Koronful M S, et al. Evaluation of water saturation from laboratory to logs and the effect of pore geometry on capillarity[C]//Abu Dhabi:SPWLA Middle East Regional Symposium, 2007.
[47] 陈杰. 基于电阻率测井资料研究致密砂岩孔隙结构特征[D]. 成都:西南石油学院, 2005.
[47] Chen J. Study on pore structure characteristics of tight sandstone based on resistivity logging data[D]. Chengdu:Southwest Petroleum University, 2005.
[48] Carlos A, Grattoni. The effect of differences of multiphase spatial distributions on the electric properties of porous media[J]. Log Analyst, 1998,39(4):47-57.
[49] 况晏. 致密砂砾岩储层孔隙结构及饱和度测井评价方法研究[D]. 成都:西南石油大学, 2018.
[49] Kuang Y. Study on the well logging evaluation method of pore structure and saturation in the tight sandy conglomerate reservoirs[D]. Chengdu:Southwest Petroleum University, 2018.
[50] Ge X, Fan Y, Cao Y, et al. Reservoir pore structure classification technology of carbonate rock based on NMR T2 spectrum decomposition[J]. Applied Magnetic Resonance, 2014,45(2):155-167.
doi: 10.1007/s00723-013-0511-5
[51] 王学武, 杨正明, 李海波, 等. 核磁共振研究低渗透储层孔隙结构方法[J]. 西南石油大学学报:自然科学版, 2010,32(2):70-72.
[51] Wang X W, Yang Z M, Li H B, et al. Experimental study on pore structure of low permeability core with NMR spectra[J]. Journal of Southwest Petroleum University:Science & Technology Edition, 2010,32(2):70-72.
[52] 陈国军, 高明, 李静, 等. 核磁共振测井在致密储层孔隙结构评价中的应用[J]. 天然气勘探与开发, 2014,37(2):41-44.
[52] Chen G J, Gao M, Li J, et al. Application of NMR well logging to evaluating porous structure of tight oil reservoir[J]. Natural Gas Exploration & Development, 2014,37(2):41-44.
[53] Huang X, Li A, Li X, et al. Influence of typical core minerals on tight oil recovery during CO2 flooding using NMR technique[J]. Energy & Fuels, 2019,33(8):7147-7154.
doi: 10.1021/acs.energyfuels.9b01220
[54] Yakov V. A practical approach to obtain drainage capillary pressure curves from NMR core and log data[J]. Petrophysics, 2001,4:334-343.
[55] 刘堂宴, 王绍民, 傅容珊, 等. 核磁共振谱的岩石孔喉结构分析[J]. 石油地球物理勘探, 2003,38(3):328-333.
[55] Liu T Y, Wang S M, Fu R S, et al. Analysis of rock pore throat structure with NMR spectra[J]. Oil Geophysical Prospecting, 2003,38(3):328-333.
[56] 何雨丹, 毛志强, 肖立志, 等. 利用核磁共振T2分布构造毛管压力曲线的新方法[J]. 吉林大学学报:地球科学版, 2005,35(2):177-181.
[56] He Y D, Mao Z Q, Xiao L Z, et al. A new method to obtain capillary pressure curve using NMR T2 distribution[J]. Journal of Jilin University:Earth Science Edition, 2005,35(2):177-181.
[57] 童茂松. 泥质砂岩激发极化弛豫时间谱的正则化反演[J]. 物探与化探, 2015,39(1):186-191.
[57] Tong M S. The regularization inversion of induced polarization relaxation time spectrum of agrillaceous sand[J]. Geophysical and Geochemical Exploration, 2015,39(1):186-191.
[58] Eslami M, Kadkhodaie A, Sharghi Y, et al. Construction of synthetic capillary pressure curves from the joint use of NMR log data and conventional well logs[J]. Journal of Petroleum Science & Engineering, 2013,111(11):50-58.
[59] Liang X, Zou C C, Mao Z Q, et al. An empirical approach of evaluating tight sandstone reservoir pore structure in the absence of NMR logs[J]. Journal of Petroleum Science & Engineering, 2015,137:227-239.
[60] 陈文祥. 致密砂岩油藏孔隙特征与衰竭式开采实验研究[D]. 北京:中国地质大学, 2019.
[60] Chen W X. Experimental investigation of tight oil pore characteristic and depletion[D]. Beijing:China University of Geosciences, 2019.
[61] 侯波, 康洪全, 程涛. 综合成岩作用和孔隙形状的岩石物理模型及其应用[J]. 物探与化探, 2019,43(1):161-167.
[61] Hou B, Kang H Q, Cheng T. A new rock physics model integrating diagenesis and pore shape and its application[J]. Geophysical and Geochemical Exploration, 2019,43(1):161-167.
[62] Tao G, King M S. Porosity and pore structure from acoustic well logging data[J]. Geophysical Prospecting, 1993,41(4):435-451.
doi: 10.1111/gpr.1993.41.issue-4
[63] Sun Y F. A two-parameter model of elastic wave velocities in rocks and numerical AVO modeling[J]. Journal of Computational Acoustics, 2004,12(4):619-630.
doi: 10.1142/S0218396X04002432
[64] Eberli G P, Batzle M L, Anselmetti F S, et al. Factors controlling elastic properties in carbonate sediments and rocks[J]. The Leading Edge, 2003,22(1):654-660.
doi: 10.1190/1.1599691
[65] 唐晓明. 含孔隙、裂隙介质弹性波动的统一理论——Biot理论的推广[J]. 中国科学:地球科学, 2011,41(6):784-795.
[65] Tang X M. A unified theory for elastic wave propagation through porous media containing cracks—an extension of Biot’s poroelastic wave theory[J]. Science China Earth Science, 2011,41(6):784-795.
[66] 陈雪莲, 唐晓明, 钱玉萍. 含孔隙、裂隙致密介质中多极子声波的传播特征[J]. 地球物理学报, 2014,57(9):2961-2970.
[66] Chen X L, Tang X M, Qian Y P. Characteristics of multipole acoustic logging in cracked porous tight formations[J]. Chinese Journal of Geophysics Propagation, 2014,57(9):2961-2970.
[67] 张明明, 梁利喜, 蒋少龙. 不同孔隙结构碳酸盐岩对声波时频特性的影响[J]. 断块油气田, 2016,23(6):825-828.
[67] Zhang M M, Liang L X, Jiang S L. Influence of different pore structures of carbonate rock on time and frequency characteristics of acoustic wave spread[J]. Fault-Block Oil & Gas Field, 2016,23(6):825-828.
[68] 承秋泉, 陈红宇, 范明, 等. 盖层全孔隙结构测定方法[J]. 石油实验地质, 2006,28(6):604-608.
[68] Cheng Q Q, Chen H Y, Fan M, et al. Determination of the total pore texture of caprock[J]. Petroleum Geology & Experiment, 2006,28(6):604-608.
[69] 李宁. 火成岩储层孔隙结构表征与储层参数分类评价[D]. 长春:吉林大学, 2010.
[69] Li N. Characterization of igneous reservoir pore structure and classified evaluation of reservoir parameter[D]. Changchun:Jilin University, 2010.
[70] 黄婧. 多孔介质孔隙结构研究综述[J]. 内江师范学院学报, 2016,31(4):13-18.
[70] Huang J. A review of the research progress of the multi-pore media porous structure[J]. Journal of Neijiang Normal University, 2016,31(4):13-18.
[71] Clelland W D, Fens, Koninklijke T W. Automated rock characterization with SEM image-analysis techniques[J]. SPE Formation Evaluation, 1991,6(4):437-443.
[72] 朱如凯, 吴松涛, 苏玲, 等. 中国致密储层孔隙结构表征需注意的问题及未来发展方向[J]. 石油学报, 2016,37(11):1324-1336.
[72] Zhu R K, Wu S T, Su L, et al. Problems and future works of porous texture characterization of tight reservoirs in China[J]. Acta Petrolei Sinica, 2016,37(11):1324-1336.
[73] 章新文, 毛海艳, 谢春安, 等. 泌阳凹陷深层致密砂岩孔隙结构测井评价方法研究[J]. 特种油气藏, 2019,26(4):27-32.
[73] Zhang X W, Mao H Y, Xie C A, et al. Logging evaluation method for the tight sandstone pore structure in Biyang depression[J]. Special Oil and Gas Reservoirs, 2019,26(4):27-32.
[74] 夏培. 含泥质致密砂岩储层三孔隙导电模型[J]. 物探与化探, 2017,41(4):748-752.
[74] Xia P. A triple-porosity conducting model for shaly tight sandstone reservoir[J]. Geophysical and Geochemical Exploration, 2017,41(4):748-752.
[75] 范雨霏, 潘保芝, 张芳. 复杂孔隙几何形态导电理论与火山岩饱和度模型研究[J]. 物探与化探, 2018,42(1):172-177.
[75] Fan Y F, Pan B Z, Zhang F. Research on conductive mechanism and saturation model of the volcanic reservoir with complex pore structure[J]. Geophysical and Geochemical Exploration, 2018,42(1):172-177.
[76] Li C X, Liu M, Guo B C. Classification of tight sandstone reservoirs based on NMR logging[J]. Applied Geophysics, 2019,16(4):554-556.
[1] 刘庆, 张镇, 杨帅, 李枫凌. 基于灰色关联与层次分析的脆性指数预测方法——以准噶尔盆地吉木萨尔凹陷芦草沟组致密储层为例[J]. 物探与化探, 2023, 47(4): 944-953.
[2] 王英梅, 焦雯泽, 刘生浩, 王茜, 宋瀚宇. 含天然气水合物沉积物的电阻率特性及阿尔奇公式的应用进展[J]. 物探与化探, 2023, 47(3): 782-793.
[3] 王振涛. 测井方位遮挡下的反距离加权建模方法[J]. 物探与化探, 2023, 47(3): 810-815.
[4] 陈星河, 张超谟, 朱林奇, 张冲, 张占松, 郭建宏. 联合核磁共振测井与Thomeer模型评价碳酸盐岩储层饱和度[J]. 物探与化探, 2023, 47(1): 110-119.
[5] 杨朝义, 朱乾坤, 揭绍鹏, 孔垂爱, 沙有财, 钟志勇, 沈啟武, 陈志军, 马火林. 云南普朗铜矿井孔测井资料综合应用[J]. 物探与化探, 2023, 47(1): 14-21.
[6] 张建伟, 杨卓静, 王新杰, 李胜涛, 赵玉军. 碳储深孔超声成像测井系统设计与应用[J]. 物探与化探, 2022, 46(6): 1500-1506.
[7] 程仁杰, 孙建孟, 刘建新, 迟蓬, 吕馨頔, 胡文亮, 付焱鑫, 赵文兵. X凹陷A构造低阻气层成因机理分析[J]. 物探与化探, 2022, 46(6): 1369-1380.
[8] 赵理芳, 李爱勇, 王导丽, 张明鹏, 周锡明. 基于电阻率测井曲线的大地电磁测深标定[J]. 物探与化探, 2022, 46(3): 737-742.
[9] 苏林帅, 蔡明, 郑占树, 徐宝宝, 罗居森, 胡燕杰, 张荆宇. 井眼扩径对水平井声波测井响应影响的数值模拟[J]. 物探与化探, 2022, 46(2): 467-473.
[10] 石磊, 管耀, 冯进, 高慧, 邱欣卫, 阙晓铭. 基于多级次流动单元的砂砾岩储层分类渗透率评价方法——以陆丰油田古近系文昌组W53油藏为例[J]. 物探与化探, 2022, 46(1): 78-86.
[11] 崔瑞康, 孙建孟, 刘行军, 文晓峰. 低阻页岩电阻率主控因素研究[J]. 物探与化探, 2022, 46(1): 150-159.
[12] 朱学娟, 单沙沙, 殷梓原, 孔雪. PNN测井清污混注水淹层剩余油饱和度计算方法[J]. 物探与化探, 2021, 45(3): 679-685.
[13] 郭建宏, 杜婷, 张占松, 肖航, 秦瑞宝, 余杰, 王灿. 基于支持向量机与地球物理测井资料的煤体结构识别方法[J]. 物探与化探, 2021, 45(3): 768-777.
[14] 刘伟男, 张超谟, 朱林奇, 胡松, 孔政, 邓瑞. 页岩气水平井TOC测井评价新方法[J]. 物探与化探, 2021, 45(2): 423-431.
[15] 周昊仪, 莫修文, 王丽丽, 许宝寅. 基于模拟退火算法的阵列声波测井组分波慢度提取[J]. 物探与化探, 2021, 45(2): 466-472.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com