Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (1): 14-21    DOI: 10.11720/wtyht.2023.1128
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
云南普朗铜矿井孔测井资料综合应用
杨朝义1,2(), 朱乾坤1,2, 揭绍鹏3, 孔垂爱1,2, 沙有财1,2, 钟志勇1,2, 沈啟武1,2, 陈志军2,4, 马火林2,3()
1.云南迪庆有色金属有限责任公司,云南 香格里拉 674400
2.中国地质大学(武汉)普朗铜矿实践教学与创新人才培养基地,云南 香格里拉 674400
3.中国地质大学(武汉) 地球物理与空间信息学院,湖北 武汉 430074
4.中国地质大学(武汉) 资源学院,湖北 武汉 430074
Comprehensive application of borehole log data of the Pulang copper deposit, Yunnan Province
YANG Chao-Yi1,2(), ZHU Qian-Kun1,2, JIE Shao-Peng3, KONG Chui-Ai1,2, SHA You-Cai1,2, ZHONG Zhi-Yong1,2, SHEN Qi-Wu1,2, CHEN Zhi-Jun2,4, MA Huo-Lin2,3()
1. Yunnan Diqing Non-ferrous Metal Co., Ltd., Shangri-La 674400, China
2. Practical Teaching and Innovative Talents Training Base in the Pulang Copper Deposit, Shangri-La 674400, China
3. Institute of Geophysics and Geomatics, China University of Geosciences (Wuhan), Wuhan 430074, China
4. School of Earth Sciences, China University of Geosciences (Wuhan), Wuhan 430074, China
全文: PDF(6134 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

云南普朗铜矿的铜矿化体和矿体主要分布于普朗复式斑岩体内,存在复杂的多期发育。为了精细了解铜矿储层的地球物理响应特征、裂隙发育特征,为普朗铜矿的勘探和开采提供精细的矿体特征、裂隙发育及层位埋深等方面的信息,通过对普朗铜矿的钻孔测井数据采集和综合评价,结合钻孔编录、部分岩心样品资料,利用数学统计、三维交会图、卷积神经网络及裂隙参数计算等开展了普朗铜矿测井响应特征分析、岩性识别和裂隙特征分析的研究。研究区石英二长斑岩、石英闪长玢岩、角岩等三类主要岩石地层的测井响应特征表明,角岩地层的电阻率相对较高,石英闪长玢岩地层、石英二长斑岩地层的电阻率依次相对偏低,在裂隙发育层段或较为破碎的层段,电阻率降低明显。石英二长斑岩地层的充电率(极化率)相对较高,最高达10%。角岩地层的放射性强度相对较高,石英闪长玢岩地层、石英二长斑岩地层的放射性强度相对偏低。采用卷积神经网络对三类主要岩石地层进行测井岩性识别分析,准确率为97.94%。利用双侧向电阻率测井资料对地层裂隙进行判别,裂隙发育层段的电阻率会明显降低,且深侧向、浅侧向电阻率差异明显;在铜品位较高的石英二长斑岩地层,其电阻率相对偏低,高角度裂隙比较发育。相关研究结果对于普朗铜矿的矿体特征识别、矿体开采具有意义。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨朝义
朱乾坤
揭绍鹏
孔垂爱
沙有财
钟志勇
沈啟武
陈志军
马火林
关键词 普朗铜矿地球物理测井测井响应岩性识别    
Abstract

The copper mineralized bodies and orebodies of the Pulang copper deposit in Yunnan Province are mainly distributed in the Pulang complex porphyry body and were formed through complex multi-stage development. This study aims to detail the geophysical response and fractures of copper reservoirs and provide detailed orebody characteristics, fractures, and horizon burial depth to be referenced in the exploration and exploitation of the Pulang copper deposit. First, the borehole-log data in the Pulang copper deposit were sampled for comprehensive evaluation. Then, in combination with the drilling reports and data on partial core samples, this study analyzed the log response characteristics and fractures and identified the lithology of the Pulang copper deposit using mathematical statistics, three-dimensional cross plots, convolutional neural networks (CNNs), and fracture parameter calculation. The log response characteristics of the three major strata of quartz monzonite porphyries, quartz diorite porphyrites, and hornstones in the study area are as follows. The hornstone strata have relatively high resistivity, followed by the quartz diorite porphyrite strata and the quartz monzonite porphyry strata in sequence. The resistivity decreases significantly at the intervals with fractures occurring or at the relatively fractured intervals. The quartz monzonite porphyry strata have a relatively high charge rate (polarization rate) of up to about 10%. The hornstone strata have relatively high radioactive intensity than the quartz diorite porphyrite strata and the quartz monzonite porphyry strata. CNNs were used to identify and analyze the lithology of the three major types of strata based on log data, with an accuracy rate of 97.94%. Finally, this study identified fractures in these strata using dual laterolog data. The resistivity significantly decreases at intervals with fractures occurring and differs greatly between deep and shallow lateral resistivity. The quartz monzonite porphyry strata with a high copper grade have relatively low resistivity and relatively well-developed high-angle fractures. The results of this study are of significance for the identification of ore body characteristics and the exploitation of ore bodies in the Pulang copper deposit.

Key wordsPulang copper deposit    geophysical well logging    logging response    lithology identification
收稿日期: 2022-03-23      修回日期: 2022-10-08      出版日期: 2023-02-20
ZTFLH:  P631  
基金资助:国家重点研发计划项目(2016YFC0600201);国家自然科学基金项目(41630317)
通讯作者: 马火林(1970-),男,博士,副教授。Email: mhl70@163.com
作者简介: 杨朝义(1987-),男,采矿工程师,主要从事矿产资源开发及生产技术管理工作。Email: 342235766@qq.com
引用本文:   
杨朝义, 朱乾坤, 揭绍鹏, 孔垂爱, 沙有财, 钟志勇, 沈啟武, 陈志军, 马火林. 云南普朗铜矿井孔测井资料综合应用[J]. 物探与化探, 2023, 47(1): 14-21.
YANG Chao-Yi, ZHU Qian-Kun, JIE Shao-Peng, KONG Chui-Ai, SHA You-Cai, ZHONG Zhi-Yong, SHEN Qi-Wu, CHEN Zhi-Jun, MA Huo-Lin. Comprehensive application of borehole log data of the Pulang copper deposit, Yunnan Province. Geophysical and Geochemical Exploration, 2023, 47(1): 14-21.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.1128      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I1/14
Fig.1  研究区域构造及地质简图(据文献[10] 修改)
Fig.2  ZK18XX部分井段测井曲线
Fig.3  石英闪长玢岩、石英二长斑岩、角岩等三类岩石地层的测井曲线
Fig.4  三类岩性地层的3种测井参数及铜品位的三维交会图
岩性 自然伽马/API Ma/% RD/(Ω·m) w(Cu)/%
分布范围(平均值) 分布范围(平均值) 分布范围(平均值) 分布范围(平均值)
石英二
长斑岩
31~203(135) 1.9~10.1(4.1) 204~2931(1223) 0.3~1.2(0.42)
石英闪
长玢岩
107~219(159) 0.9~3.9(2.8) 1302~3901(2015) 0.33~0.39(0.36)
角岩 116~238(173) 2.3~4.7(3.1) 1537~5972(3180) 0.32~0.52(0.39)
Table 1  三种岩性的测井响应和铜品位参数特征
Fig.5  卷积神经网络结构示意
岩性 CAL/cm GR/API RD/(Ω·m) RS/(Ω·m) Ma/% w(40K)/% w(232Th)/10-6 w(238U)/10-6 Label
角岩 8.4 195.3 5343.6 2122.7 4.5 2.9 12.4 5.6 0
8.4 201.2 5343.6 2182.5 4.7 3.1 18.8 9.1 0
8.4 170.2 5000.0 2182.5 4.7 2.1 13.0 10.4 0
8.3 175.3 4638.3 2302.5 4.6 4.5 0.3 8.9 0
8.5 194.8 4638.3 2405.9 4.3 1.8 31.3 8.5 0
8.6 198.3 4810.1 2405.9 4.3 1.9 26.8 1.0 0
8.4 190.6 5972.9 2270.1 4.5 5.2 9.9 11.0 0
8.5 201.5 5972.9 2256.6 4.3 3.0 1.3 25.9 0
8.4 187.6 4710.3 2256.6 4.3 0.7 15.2 11.2 0
8.4 175.9 4227.2 1883.8 4.1 8.5 9.9 1.1 0
石英二长斑岩 7.7 100.5 300.1 116.7 8.2 1.7 7.5 3.4 1
7.7 98.6 300.1 116.7 9.0 1.4 8.3 2.8 1
7.7 100.5 269.5 130.7 9.0 1.4 5.7 2.6 1
7.7 106.2 269.5 130.7 9.0 1.4 5.1 3.3 1
7.7 106.2 256.6 112.6 7.3 1.8 4.9 6.7 1
7.7 104.3 346.4 229.7 7.0 2.2 6.1 5.5 1
7.7 104.3 287.6 241.9 6.2 2.5 6.8 4.7 1
7.7 108.1 287.6 241.9 6.2 2.8 10.6 4.1 1
7.7 100.5 244.7 222.7 4.6 3.3 11.9 7.0 1
7.7 98.6 244.7 222.7 4.6 2.2 6.1 6.4 1
石英闪长玢岩 9.7 147.2 2301.8 1237.4 3.2 3.5 1.6 14.1 2
9.9 161.8 2167.1 1348.2 3.5 3.4 4.8 3.5 2
9.8 178.8 2117.9 1385.7 3.6 3.2 2.8 12.7 2
9.7 140.8 1988.1 1495.9 3.4 3.9 2.6 4.8 2
9.9 148.5 1899.8 1514.2 3.3 3.8 14.4 0.5 2
9.8 157.6 1783.3 1548.3 3.2 1.5 14.7 6.4 2
9.9 161.9 1745.4 1622.9 3.2 4.7 11.8 2.1 2
9.8 210.4 1717.8 1686.4 3.1 1.9 3.2 15.0 2
9.8 134.5 1699.8 1828.1 3.1 3.9 13.1 5.7 2
9.8 171.4 1691.3 1910.7 3.0 5.4 25.6 5.8 2
Table 2  CNN训练样本集部分数据
真实类别 预测类别
角岩 石英二长斑岩 石英闪长玢岩 总计
角岩 296 2 2 300
石英二长斑岩 0 306 3 309
石英闪长玢岩 7 5 300 312
总计 303 313 305 921
Table 3  CNN网络岩性预测混淆矩阵
Fig.6  Y值与裂缝倾角交会图
Y值范围 裂隙类型 倾角范
围/(°)
判断
点数
判断正
确点数
判断正
确率/%
Y≤0.3 低角度缝 0~30 20 14 70.0
0.3<Y≤0.5 倾斜裂缝 30~60 15 13 86.7
Y>0.5 高角度缝 60~90 22 19 86.4
Table 4  Y值判断裂隙类型统计
倾角范围/(°) 频数/条 占比/%
0~15 3 0.76
15~30 31 7.81
30~45 56 14.11
45~60 65 16.37
60~75 143 36.02
75~90 99 24.94
总计 397 100
Table 5  ZK18XX含矿脉体倾角数据
Fig.7  Wl与裂缝倾角交会图
Fig.8  Wh与裂缝倾角交会图
[1] 范玉华, 李文昌. 云南普朗斑岩铜矿床地质特征[J]. 中国地质, 2006, 33(2): 352-362.
[1] Fan Y H, Li W C. Geological characteristics of the Pulang porphyry copper deposit, Yunnan[J]. Geology in China, 2006, 33(2): 352-362.
[2] 潘和平, 马火林, 蔡柏林, 等. 地球物理测井与井中物探[M]. 北京: 科学出版社, 2009.
[2] Pan H P, Ma H L, Cai B L, et al. Principles of Geophysical Logging and Well Geophysical Exploration[M]. Beijing: Science Press, 2009.
[3] 袁桂琴, 熊盛青, 孟庆敏, 等. 地球物理勘查技术与应用研究[J]. 地质学报, 2011, 85(11): 1744-1805.
[3] Yuan G Q, Xiong S Q, Meng Q M, et al. Application research of geophysical prospecting techniques[J]. Acta Geologica Sinica, 2011, 85(11): 1744-1805.
[4] 樊彦超. 地球物理测井技术在金属矿勘查中的应用[J]. 世界有色金属, 2018(15): 129-130.
[4] Fan Y C. Application of geophysical logging technology in metal ore exploration[J]. World Nonferrous Metals, 2018(15): 129-130.
[5] 周新鹏, 项彪, 邹长春, 等. 南岭地区多金属矿NLSD-2孔综合地球物理测井研究[J]. 地质学报, 2014, 88(4): 686-694.
[5] Zhou X P, Xiang B, Zou C C, et al. Integrated geophysical logging study on the borehole NLSD-2 of the polymetallic ore in the Nanling District[J]. Acta Geologica Sinica, 2014, 88(4): 686-694.
doi: 10.1111/1755-6724.12375_4
[6] 郭建宏, 杜婷, 张占松, 等. 基于支持向量机与地球物理测井资料的煤体结构识别方法[J]. 物探与化探, 2021, 45(3):768-777.
[6] Guo J H, Du T, Zhang Z S, et al. The coal structure identification method based on support vector machine and geophysical logging data[J]. Geophysical and Geochemical Exploration, 2021, 45(3):768-777.
[7] Konate A A, Pan H P, Ma H L, et al. Use of spectral gamma ray as a lithology guide for fault rocks: A case study from the Wenchuan Earthquake Fault Scientific Drilling project Borehole 4 (WFSD-4)[J]. Applied Radiation and Isotopes, 2017, 128: 75-85. https://doi.org/10.1016/j.apradiso.2017.06.038.
doi: S0969-8043(17)30025-8 pmid: 28688249
[8] Xu Z X, Ma W, Peng L, et al. Deep learning of rock images for intelligent lithology identification[J]. Computers & Geosciences, 2021, 154: 104799. https://doi.org/10.1016/j.cageo.2021.104799.
doi: 10.1016/j.cageo.2021.104799
[9] 陈钢花, 梁莎莎, 王军, 等. 卷积神经网络在岩性识别中的应用[J]. 测井技术, 2019, 43(2): 129-134.
[9] Chen G H, Liang S S, Wang J, et al. Application of convolutional neural network in lithology identification[J]. Well Logging Technology, 2019, 43(2): 129-134.
[10] Yang L Q, He W Y, Gao X, et al. Mesozoic multiple magmatism and porphyry-skarn Cu-polymetallic systems of the Yidun Terrane, Eastern Tethys: Implications for subduction- and transtension-related metallogeny[J]. Gondwana Research, 2018, 62: 144-162. https://doi.org/10.1016/j.gr.2018.02.009.
doi: 10.1016/j.gr.2018.02.009
[11] 李文昌, 曾普胜. 云南普朗超大型斑岩铜矿特征及成矿模型[J]. 成都理工大学学报: 自然科学版, 2007, 34(4): 436- 446.
[11] Li W C, Zeng P S. Characteristics and metallogenic model of the Pulang super large porphyry copper deposit in Yunnan, China[J]. Journal of Chengdu University of Technology:Science & Technology Edition, 2007, 34(4):436-446.
[12] 李文昌, 余海军, 尹光候. 西南”三江”格咱岛弧斑岩成矿系统[J]. 岩石学报, 2013, 29(4): 1129-1144.
[12] Li W C, Yu H J, Yin G H. Porphyry metallogenic system of Geza arc in the Sanjiang region, southwestern China[J]. Acta Petrologica Sinica, 2013, 29(4): 1129-1144.
[13] LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. https://doi.org/10.1109/5.726791.
doi: 10.1109/5.726791
[14] Sibbit A M, Faivre Q. The dual laterolog response in fractured rocks[C]// Dallas:SPWLA 26th Annual Logging Symposium, 1985: 17-20.
[1] 王宗仁, 文畅, 谢凯, 盛冠群, 贺建飚. 多尺度时频空三域特征联合下的储层岩性识别方法[J]. 物探与化探, 2023, 47(1): 81-90.
[2] 郭建宏, 杜婷, 张占松, 肖航, 秦瑞宝, 余杰, 王灿. 基于支持向量机与地球物理测井资料的煤体结构识别方法[J]. 物探与化探, 2021, 45(3): 768-777.
[3] 刘伟男, 张超谟, 朱林奇, 胡松, 孔政, 邓瑞. 页岩气水平井TOC测井评价新方法[J]. 物探与化探, 2021, 45(2): 423-431.
[4] 郭建宏, 张占松, 张超谟, 周雪晴, 肖航, 秦瑞宝, 余杰. 用地球物理测井资料预测煤层气含量——基于斜率关联度—随机森林方法的工作案例[J]. 物探与化探, 2021, 45(1): 18-28.
[5] 蔡泽园, 鲁宝亮, 熊盛青, 王万银. 基于自适应核密度的贝叶斯概率模型岩性识别方法研究[J]. 物探与化探, 2020, 44(4): 919-927.
[6] 林振洲, 刘东明, 潘和平, 李洋, 高文利, 邱礼泉, 张小未. 木里地区天然气水合物测井响应特征[J]. 物探与化探, 2017, 41(6): 1012-1018.
[7] 覃瑞东, 林振洲, 潘和平, 秦臻, 邓呈祥, 纪扬, 徐伟. 木里地区水合物及岩性测井识别方法[J]. 物探与化探, 2017, 41(6): 1088-1098.
[8] 周游, 高刚, 桂志先, 周倩, 蔡伟祥, 龚屹, 杨亚华. 灰质发育背景下识别浊积岩优质储层的技术研究——以东营凹陷董集洼陷为例[J]. 物探与化探, 2017, 41(5): 899-906.
[9] 王攀, 梁明星. 煤系烃源岩测井响应特征及有机碳评价方法[J]. 物探与化探, 2016, 40(1): 197-202.
[10] 邓呈祥, 高文利, 潘和平, 孔广胜, 方思南, 林振洲. 庐枞矿集区科学钻探的岩性识别方法[J]. 物探与化探, 2015, 39(6): 1144-1149.
[11] 鲍世才, 马彪. 地球物理测井在岩盐矿勘探中的应用[J]. 物探与化探, 2013, 37(3): 449-452.
[12] 刘迪仁, 万文春, 夏培, 闫林辉, 别康. 不同井眼条件下的水平井双侧向测井响应[J]. 物探与化探, 2012, 36(3): 422-425.
[13] 张莹, 潘保芝. 支持向量机与微电阻率成像测井识别火山岩岩性[J]. 物探与化探, 2011, 35(5): 634-638,642.
[14] 张应文, 王亮, 杨胜发. 黔北煤田测井中煤层的沉积序列编号解释对比方法及应用[J]. 物探与化探, 2011, 35(3): 340-344.
[15] 孙歧峰, 白清云. 转换横波阻抗的求取[J]. 物探与化探, 2011, 35(1): 93-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com