Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (6): 1369-1380    DOI: 10.11720/wtyht.2022.1416
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
X凹陷A构造低阻气层成因机理分析
程仁杰1(), 孙建孟1, 刘建新2, 迟蓬1, 吕馨頔1, 胡文亮2, 付焱鑫2, 赵文兵3
1.中国石油大学(华东) 地球科学与技术学院,山东 青岛 266580
2.中海石油(中国)有限公司 上海分公司,上海 200335
3.中国石油塔里木油田分公司勘探事业部,新疆 库尔勒 841000
Genetic mechanisms of low-resistivity gas zones in structure A of sag X
CHENG Ren-Jie1(), SUN Jian-Meng1, LIU Jian-Xin2, CHI Peng1, Lyu Xin-Di1, HU Wen-Liang2, FU Yan-Xin2, ZHAO Wen-BING3
1. School of Geoscience, China University of Petroleum (East China), Qingdao 266580, China
2. CNOOC China Limited, Shanghai Branch, Shanghai 200335, China
3. Research Institute of Petroleum Exploration and Development, Tarim Oilfield Company, PetroChina, Korla 841000, China
全文: PDF(10296 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

经勘探开发证实,X凹陷A构造H组地层Q3c上部层段存在大量低阻气层。针对该层段地质沉积环境认识不清、储层微观认识不深入、气层低阻成因尚未明确等问题,以研究区3口井的测井资料为基础,结合钻井、录井资料和大量岩石物理实验资料开展相关研究。对研究区开展了基于薄片鉴定资料的岩石学、物性特征分析;通过连井剖面、特殊测井资料并结合大量岩石物理实验对低阻气层成因机理开展研究;基于数字岩心技术构建多组分导电模型,从微观可视化尺度证实了低阻气层成因机理,开展有限元电性模拟定量分析各低阻成因对电阻率降低的贡献。研究结果表明,由于高阳离子交换容量粘土矿物的存在以及良好物性基础上发育复杂孔隙结构,共同导致了研究区Q3c上部气层的低阻响应。其中,粘土附加导电性对低阻响应的贡献为35.63%,良好物性条件下的复杂孔隙结构对低阻响应的贡献达到64.37%,电性模拟结果与测井电性特征吻合,证实了Q3c上部低阻气层成因机理。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
程仁杰
孙建孟
刘建新
迟蓬
吕馨頔
胡文亮
付焱鑫
赵文兵
关键词 低阻气层粘土附加导电孔隙结构数字岩心导电模拟    
Abstract

As confirmed by exploration and development, many low-resistivity gas zones exist in the upper portion of layer Q3c of the H Formation in structure A of Sag X. Given the problems such as unclear understanding of the geological sedimentary environment, insufficient microcosmic knowledge about the reservoirs, and unclear causes of the low resistivity of the gas zones, this study conducted extensive research based on the log data of three wells in the study area, as well as the data on drilling and many petrophysical experiments. Specifically, the petrological and physical property characteristics of the study area were studied using the thin-section identification data; the genetic mechanisms of low-resistivity gas zones were studied using the well tie sections and the special log data, as well as the data of many petrophysical experiments; the formation mechanisms of low-resistivity gas zones were confirmed from the microscopic visualization scale by constructing a multi-component conductivity model using the digital core technique, and the contributions of various low-resistivity geneses to the decrease in resistivity were quantitatively analyzed through the finite element-based electrical simulations. As indicated by the study results, the low-resistivity response of the gas zones in the study area is caused by the presence of clay minerals with high clay content and high cation exchange capacity and also results from the complex pore structure formed under the favorable physical property conditions in the anomalous high-pressure depositional setting. The contributions of the clay additional conductivity and the complex pore structure to the low resistivity are 35.63% and up to 64.37%, respectively. The electrical simulation results are consistent with the log-derived electrical characteristics, verifying the genetic mechanisms of the low-resistivity gas zones in the upper portion of the Q3c.

Key wordslow-resistivity gas zone    clay additional conductivity    pore structure    digital core    electrical simulation
收稿日期: 2021-08-02      修回日期: 2022-01-28      出版日期: 2022-12-20
ZTFLH:  P631.8  
基金资助:青岛海洋科学与技术试点国家实验室山东省专项经费(2021QNLM20001);国家自然科学基金(42174143);国家自然科学基金(41874138)
作者简介: 程仁杰(1998-),男,重庆云阳人,现为中国石油大学(华东)在读硕士生,主要研究方向为测井数据处理与综合解释。Email:582476598@qq.com
引用本文:   
程仁杰, 孙建孟, 刘建新, 迟蓬, 吕馨頔, 胡文亮, 付焱鑫, 赵文兵. X凹陷A构造低阻气层成因机理分析[J]. 物探与化探, 2022, 46(6): 1369-1380.
CHENG Ren-Jie, SUN Jian-Meng, LIU Jian-Xin, CHI Peng, Lyu Xin-Di, HU Wen-Liang, FU Yan-Xin, ZHAO Wen-BING. Genetic mechanisms of low-resistivity gas zones in structure A of sag X. Geophysical and Geochemical Exploration, 2022, 46(6): 1369-1380.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.1416      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I6/1369
层位 岩心数量 矿物含量均值/% 最大粒度
均值/mm
主要粒径
分布/mm
分选性 磨圆度
石英 钾长石 斜长石 岩屑
Q3 183 63.0 6.28 9.35 20.1 1.55 0.30~0.58 中—好 次棱—次圆
Q4 292 65.1 6.66 9.66 18.6 0.83 0.20~0.48 好—中 次棱—次圆
Q5 6 64.2 6.50 11.00 18.3 0.57 0.15~0.36 次棱—次圆
Q6 58 64.5 6.16 9.78 19.6 0.77 0.15~0.40 次棱—次圆
Table 1  A构造3口井薄片鉴定分析统计
层段 埋深/m 样品数 孔隙度分布/% 孔隙度均值/% 渗透率均值/mD
Q3b 3429~3550 294 8.1~9.0 8.4 1.50
Q3c上部 3592~3608 6 8.5~19.3 14.5 2.54
Q3c下部 3611~3659 14 8.3~12.0 11.0 1.63
Q4b 3810~3868 233 8.6~12.1 9.729 0.911
Table 2  A-2井岩心物性分析资料统计
Fig.1  Q3c层段铸体薄片(10倍目镜×2倍物镜,单偏光)
a—A-2井Q3c上部3 600 m;b—A-2井Q3c上部3 607 m;c—A-2井Q3c下部3 634 m
Fig.2  A构造3口井连井剖面
Fig.3  A-2井Q3c层段FMI成像图像
a—3 596~3 602 m低阻气层段FMI成像; b—3 606~3 612 m高阻气层段FMI成像
井次 岩性 层位 深度/m 矿物种类和含量/%
石英 钾长石 斜长石 方解石 白云石 粘土总量
A-2 细砂岩 Q3c上部
低阻气层
3600 62.2 5.7 15.9 1.4 0.6 14.2
3596 60.2 4.9 18.3 1.2 0.3 15.1
A-4 3709 59.7 5.7 14.1 1.0 0.5 19.0
A-2 Q3c下部
高阻气层
3645 65.6 9.6 15.4 1.8 1.2 6.4
3627 62.4 10.8 16.7 0.3 0.8 9.0
A-4 3732 69.0 10.6 13.6 2.0 1.0 3.8
Table 3  X衍射—全岩实验结果对比
Fig.4  高、低阻气层各类型粘土矿物相对含量直方图
Fig.5  高、低阻气层扫描电镜微观特征对比
a—A-2井高阻气层扫描电镜;b—A-2井低阻气层扫描电镜;c—A-2井低阻气层扫描电镜
粘土矿物类型 理论CEC范围/
(mmol·g-1)
CEC均值/
(mmol·g-1)
蒙脱石 0.80~1.50 1.20
伊利石 0.10~0.40 0.25
高岭石 0.03~0.25 0.09
绿泥石 接近于0 0
Table 4  各类型粘土矿物阳离子交换容量
Fig.6  地层压力趋势
Fig.7  A-2井Q3c层段核磁共振测井响应
Fig.8  高、低阻气层压汞曲线及核磁测井各尺寸孔隙占比
a—高、低阻各两块岩心压汞曲线对比;b—低阻气层中各尺寸孔隙占比;c—高阻气层中各尺寸孔隙占比
Fig.9  高、低阻两块数字岩心的矿物组分分布以及孔隙网络模型
a—低阻岩心全貌;b—低阻岩心长石组分;c—低阻岩心伊利石组分;d—低阻岩心孔隙网络模型;e—高阻岩心全貌;f—高阻岩心长石组分;g—高阻岩心伊利石组分;h—高阻岩心孔隙网络模型
岩心类别 石英/% 长石/% 伊利石/% 绿泥石/% 孔隙度/% 渗透率/mD
数字岩心 物性实验 数字岩心 物性实验
低阻岩心 54.87 20.13 8.69 2.51 12.58 13.20 1.68 1.82
高阻岩心 57.65 21.29 2.51 5.23 8.42 8.54 0.97 1.03
Table 5  高、低阻两块数字岩心各矿物组分含量及物性参数
Fig.10  高、低阻岩心电性模拟对比
a—饱含水高阻岩心各组分分布;b—高阻岩心饱含水情况下的电流分布;c—饱含水低阻岩心的组分分布;d—低阻岩心饱含水情况下的电流分布;e—含水饱和度为40%时高阻岩心各组分分布;f—高阻岩心40%含水饱和度条件下的电流分布;g—含水饱和度为40%时低阻岩心各组分分布;h—低阻岩心40%含水饱和度条件下的电流分布
Fig.11  高、低阻两块数字岩心电性模拟结果
a—高、低阻两块岩心不同含水饱和度下电阻率的变化;b—高、低阻两块岩心电阻增大率RI与含水饱和度的拟合
Fig.12  4块岩心电阻率随含水饱和度的变化
粘土附加导电性 定量条件 φ=0.0842、Sw=0.4
ΔR1(Qv=0.082→0.292)/(Ω·m) 16.82
物性/孔隙结构差异 定量条件 Qv=0.082
孔隙度变量 φ=0.0842 φ=0.1258 φ=0.08→0.12
ΔR2(Sw=0.4→0.6)/Ω·m 22.53 9.22 30.4
Table 6  各低阻成因电阻率下降量分析及参数选取
[1] 陶士振, 邹才能. 东海盆地西湖凹陷天然气成藏及分布规律[J]. 石油勘探与开发, 2005, 32(4): 103-110.
[1] Tao S Z, Zou C N. Accumulation and disrtibution of natural gases in Xihu Sag, East China Sea Basin[J]. Petroleum Exploration & Development, 2005, 32(4): 103-110.
[2] 何将启, 梁世友, 陈拥锋, 等. 东海盆地西湖凹陷新生代构造演化对油气的控制作用——以平湖组油气响应为例[J]. 石油实验地质, 2008, 30(3): 221-226.
[2] He J Q, Liang S Y, Chen Y F, et al. Control on petroleum by Cenozoic tectonic evolution in the Xihu Sag, the East China Sea Basin: Taking petroleum response of the Pinghu Foramation as an example[J]. Petroleum Geology & Experiment, 2008, 30(3):221-226.
[3] 张银国. 东海西湖凹陷花港组油气地质条件与油气分布规律[J]. 石油实验地质, 2010, 32(3): 223-241.
[3] Zhang Y G. Petroleum Geology and hydrocarbom distribution pattern of Huagang Formation in the Xihu sag of the East China Sea[J]. Petroleum Geology & Experiment, 2010, 32(3): 223-241.
[4] 董春梅, 赵仲祥, 张宪国, 等. 西湖凹陷中北部花港组物源及沉积相分析[J]. 东北石油大学学报, 2018, 42(5): 25-34.
[4] Dong C M, Zhao Z X, Zhang X G, et al. Analysis of provenance and sedimentary facies of Huagang formation in the north central of Xihu Sag[J]. Journal of Noryheast Petroleum University, 2018, 42(5): 25-34.
[5] 胡明毅, 柯岭, 梁建设, 等. 西湖凹陷花港组沉积相特征及相模式[J]. 石油天然气学报, 2010, 32(5): 1-5.
[5] Hu M Y, Ke L, Liang J S, et al. The characteristics and pattern of sedimentary facies of Huagang Formation in Xihu Depression[J]. Journal of Oil and Gas Technology, 2010, 32(5): 1-5.
[6] 姜艳娇. A地区低孔渗复杂储层导电机理及产能预测方法研究[D]. 东营: 中国石油大学(华东), 2017.
[6] Jiang Y J. The research of conductive mechanism and productivity prediction of low porosity and low permeability reservoir in A area[D]. Dongying: China University of Petroleum(East China), 2017.
[7] 王迪, 戚家振, 陈现, 等. 东海N气田低阻气层成因分析及饱和度定量评价[J]. 复杂油气藏, 2017, 10(4):7-13.
[7] Wang D, Qi J Z, Chen X, et al. Forming reason analysis and saturation quantitative evaluation of low-resistivity gas layer in N Gas field of Donghai Sea[J]. Complex Hydrocarbon Reservoirs, 2017, 10(4): 7-13.
[8] 徐昉昊, 徐国盛, 刘勇, 等. 东海西湖凹陷中央反转构造带古近系花港组致密砂岩储集层控制因素[J]. 石油勘探与开发, 2020, 47(1): 98-109.
[8] Xu F H, Xu G S, Liu Y, et al. Factors controlling the development of tight sandstone reservoirs in the Huagang Formation of the central inverted structual belt in Xihu sag, East China Sea Basin[J]. Petroleum Exploration and Development, 2020, 47(1): 98-109.
[9] 刘金水, 曹冰, 徐志星, 等. 西湖凹陷某构造和花港组沉积相及致密砂岩储层特征[J]. 成都理工大学学报:自然科学版, 2012, 39(2): 130-136.
[9] Liu J S, Cao B, Xu Z X, et al. Sedimentary facies and the characteristics of tight sandstone reservoirs of Huagang Formation in Xihu Depression, East China Sea Basin[J]. Journal of Chengdu Unibersity of Technology:Natural Science Edition, 2012, 39(2): 130-136.
[10] 程相志. 低阻油气层识别评价技术及分布规律研究[D]. 东营: 中国石油大学(华东), 2008.
[10] Cheng X Z. Study of recognition technology and distribution law on low-resistivity oil reservoir[D]. Dongying: China University of Petroleum(East China), 2008.
[11] 杜栩, 郑洪印, 焦秀琼. 异常压力与油气分布[J]. 地学前缘, 1995, 2(3/4):137-148.
[11] Du X, Zheng H Y, Jiao X Q. Abnormal pressure and hydrocarbon accumulation[J]. Earth Science Frontiers, 1995, 2(3/4): 137-148.
[12] 赵靖舟, 李军, 徐泽阳. 沉积盆地超压成因研究进展[J]. 石油学报. 2017, 38(9): 973-998.
doi: 10.7623/syxb201709001
[12] Zhao J Z, Li J, Xu Z Y. Advances in the origin of overpressure in sedimentary basins[J]. Acta Petrolei Sinica, 2017, 38(9): 973-998.
[13] Osborne M J, Swarbrick R E. Mechanisms for generating overpressure in sedimentary basins: A reevaluation: Reply[J]. AAPG Bulletin, 2001, 85(12): 2119-2119.
[14] 李超, 罗晓容, 张立宽. 泥岩化学压实作用的超压响应与孔隙压力预测[J]. 中国矿业大学学报, 2020, 49(5): 951-973.
[14] Li C, Luo X R, Zhang L K. Overpressure responses for chemical compaction of mudstones and the pore pressure prediction. Jouranl of China University of Mining and Technology[J]. Journal of China University of Ming and Technology, 2020, 49(5): 951-973.
[15] 褚庆忠. 异常压力形成机制研究综述[J]. 天然气勘探与开发, 2001, 24(4): 38-46.
[15] Chu Q Z. Review of abnormal pressure formation mechanism[J]. Natural Gas Exploration and Development, 2001, 24(4): 38-46.
[16] 查明, 曲江秀, 张卫海. 异常高压与油气成藏机理[J]. 石油勘探与开发, 2002, 29(1): 19-23.
[16] Zha M, Qu J X, Zhang W H. The relationship between overpressure and reservoir forming mechanism[J]. Petroleum Exploration and Development, 2002, 29(1): 19-23.
[17] Yan W C, Sun J M, Zhang J Y, et al. Studies of electrical properties of low-resistivity sandstones based on digital rock technology[J]. Journal of Geophysics and Engineering, 2018, 15(1):153-163.
doi: 10.1088/1742-2140/aa8715
[18] 李霞, 李潮流, 李波. 致密砂岩岩电响应规律与饱和度评价方法[J]. 石油勘探与开发, 2020, 47(1): 202-212.
[18] Li X, Li C L, Li B. Response laws of rock electrical property and saturation evaluation method of tight sandstone[J]. Petroleum Exploration and Development, 2020, 47(1): 202-212.
[1] 陈秀娟, 刘之的, 刘宇羲, 柴慧强, 王勇. 致密储层孔隙结构研究综述[J]. 物探与化探, 2022, 46(1): 22-31.
[2] 顾端阳, 窦文博, 丁富寿, 严力, 吕浩. 疏松砂岩气藏低阻气层成因及识别研究——以柴达木盆地涩北气田为例[J]. 物探与化探, 2020, 44(3): 649-655.
[3] 靳钊, 王凡, 郭晨, 贺之莉, 王晓丽. 一种基于数字岩心技术的岩石等效电参数计算方法[J]. 物探与化探, 2018, 42(6): 1280-1288.
[4] 范雨霏, 潘保芝, 张芳. 复杂孔隙几何形态导电理论与火山岩饱和度模型研究[J]. 物探与化探, 2018, 42(1): 172-177.
[5] 夏培. 含泥质致密砂岩储层三孔隙导电模型[J]. 物探与化探, 2017, 41(4): 748-752.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com