Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (1): 104-113    DOI: 10.11720/wtyht.2022.2480
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
航空电磁技术在冻土调查中的探测能力分析
孙思源(), 余学中, 谢汝宽, 何怡原, 单希鹏, 李诗珺
中国自然资源航空物探遥感中心,北京 100083
Capabilities of airborne electromagnetic methods to detect permafrost
SUN Si-Yuan(), YU Xue-Zhong, XIE Ru-Kuan, HE Yi-Yuan, SHAN Xi-Peng, LI Shi-Jun
China Aero Geophysical Survey & Remote Sensing Center for Natural Resources, Beijing 100083, China
全文: PDF(4295 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

准确评估冻土三维分布和阶段性变化对我国气候、水资源、生态、工程建设等方面具有重要意义。我国多年冻土大多分布在高海拔地区,利用地面物探确定多年冻土厚度具有效率低、成本高、交通不便等问题,而依据电阻率差异的航空电磁技术具有较大优势。根据青海祁连地区冻土厚度、电阻率等信息构建地电模型,并针对AeroTEM时间域航空电磁系统和Impulse频率域航空电磁系统,通过模拟冻土电阻率、厚度、冻土下低阻层、飞行高度和线圈角度变化,分析不同条件下时间域和频率域航空系统一维正演电磁响应差异,进而确定航空电磁技术对冻土顶、底界面的探测能力。模拟结果表明,在较低噪声水平下,Impulse频率域航空电磁系统可以根据融化冻土厚度确定沼泽、湿地及湿润草甸覆盖下的冻土顶界面;AeroTEM时间域系统可以确定冻土底界面,且当冻土下存在低阻层时,确定的底界面准确性将大幅提高。因此,在调查冻土厚度时,可综合利用频率域和时间域航空电磁数据,共同确定多年冻土的顶、底界面。本文研究成果将为航空电磁技术服务于我国冻土调查提供理论支撑。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙思源
余学中
谢汝宽
何怡原
单希鹏
李诗珺
关键词 冻土航空电磁一维正演厚度探测能力    
Abstract

It is critical for climate, water resources, ecology, and engineering construction in China to accurately assess the three-dimensional distribution and periodic change of permafrost. Permafrost is mainly distributed in high-elevation regions in China. Therefore, the surface geophysical prospecting suffers from low efficiency, high cost, and poor transportation in determining the thickness of permafrost in China. In contrast, the airborne electromagnetic methods using resistivity difference enjoy great advantages. This study established a geoelectric model based on the thickness and resistivity of permafrost in Qilian area, Qinghai Province. Then, by simulating the thickness and resistivity of permafrost, low resistance layer under permafrost, flight height, and changes in the angles of receiver coils, this study analyzed the differences in electromagnetic responses under different conditions obtained from one-dimensional forward modeling using time-domain and frequency-domain airborne electromagnetic systems AeroTEM and Impulse. Based on this, this study assessed the capability of airborne electromagnetic methods to detect the top and bottom interfaces of permafrost. According to the simulation results, frequency-domain airborne electromagnetic system Impulse can determine the top interface of the permafrost covered by a marsh, wetland, or moist meadow according to the thickness of melted permafrost under a low noise level. In comparison, time-domain airborne electromagnetic system AeroTEM can determine the bottom interface of the permafrost, with the determination accuracy significantly improving when low-resistivity layers occur beneath the permafrost. Therefore, the top and bottom interfaces of permafrost can be jointly determined using frequency and time-domain airborne electromagnetic data. The results of this study will provide theoretical support for the future application of airborne electromagnetic methods to permafrost surveys in China.

Key wordspermafrost    airborne electromagnetic method    one-dimensional forward modelling    thickness    detection capability
收稿日期: 2020-10-12      修回日期: 2021-08-07      出版日期: 2022-02-20
ZTFLH:  P631  
基金资助:中国地质调查局项目“青藏高原典型区冻土与地下水分布航空物探调查”(DD20211396)
作者简介: 孙思源(1991-),男,工程师,2019年毕业于吉林大学,获得博士学位,主要从事地球物理数据处理及正反演研究。Email: sunsiyuanvip@163.com
引用本文:   
孙思源, 余学中, 谢汝宽, 何怡原, 单希鹏, 李诗珺. 航空电磁技术在冻土调查中的探测能力分析[J]. 物探与化探, 2022, 46(1): 104-113.
SUN Si-Yuan, YU Xue-Zhong, XIE Ru-Kuan, HE Yi-Yuan, SHAN Xi-Peng, LI Shi-Jun. Capabilities of airborne electromagnetic methods to detect permafrost. Geophysical and Geochemical Exploration, 2022, 46(1): 104-113.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.2480      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I1/104
Fig.1  直升机航空电磁系统
发射线圈类型 垂直磁偶极
发射信号基频 25/30/75/90 Hz
发射线圈面积 122.7 m2
发射线圈匝数 5
发射波形 三角波
发射电流 410 A
接收线圈类型 XZ分量传感器
输出数据 16个on-time数据道和17个off-time数据道
采样率 10 Hz
收发矩 沿飞行方向,接收线圈位于发射线圈后方4.5 m
Table 1  AeroTEM IV时间域航空电磁系统参数[28]
Fig.2  Impulse频率域系统吊舱内装置示意
线圈装置 水平共面装置和垂直共轴装置
发射频率 水平共面:930、4650、23250 Hz
垂直共轴:870、4350、21750 Hz
发射磁矩 800 Am2
收发矩 6.5 m
采样率 30 次/s
输出数据 二次场HxHz实虚分量
零点漂移 低频小于20×10-6/h、中频小于40×10-6/h、高频
小于60×10-6/h(预热 2 h后,温度在25 ℃以内)
噪声水平 低频2×10-6、中频3×10-6、高频5×10-6
Table 2  频率域航空电磁Impulse系统参数[29]
Fig.3  冻土地电模型1
Fig.4  不同厚度冻土模型的电磁响应
Fig.5  冻土地电模型2
Fig.6  不同电阻率冻土模型的电磁响应
Fig.7  冻土地电模型3
Fig.8  不同厚度融化冻土模型的电磁响应
Fig.9  冻土地电模型4
Fig.10  不同低阻层的电磁响应
Fig.11  模型3不同飞行高度的Impulse系统Hz分量响应
Fig.12  模型1不同飞行高度的AeroTEM系统dBz/dt响应
Fig.13  模型3不同线圈俯仰角的Impulse系统Hz分量响应
Fig.14  不同线圈俯仰角模型1的AeroTEM系统dBz/dt响应
[1] 周幼吾, 郭东信, 邱国庆, 等. 中国冻土[M]. 北京: 科学出版社, 2000.
[1] Zhou Y W, Guo D X, Qiu G Q, et al. Geocryology in China [M]. Beijing: Science Press, 2000.
[2] 柳瑶. 冻土电阻率模型及其试验研究[D]. 哈尔滨:东北林业大学, 2015.
[2] Liu Y. Establishment and experimental study of frozen soil resistivity model[D]. Haerbin: Northeast Forestry University, 2015.
[3] 祝有海, 赵省民, 卢振权. 中国冻土区天然气水合物的找矿选区及其资源潜力[J]. 天然气工业, 2011,31(1):15-19.
[3] Zhu Y H, Zhao S M, Lu Z Q. Resource potential and reservoir distribution of natural gas hydrate in permafrost areas of China[J]. Natural Gas Industry, 2011,31(1):15-19.
[4] 王通, 俞祁浩, 游艳辉, 等. 物探技术在多年冻土探测方面的应用[J]. 物探与化探, 2011,35(5):639-642.
[4] Wang T, Yu Q H, You Y H, et al. The application of electromagnetic technology to permafrost exploration[J]. Geophysical and Geochemical Exploration, 2011,35(5):639-642.
[5] 祝杰, 李平, 刘应冬. 高寒冻土条件下CSAMT在地热勘探中的试验研究[J]. 地矿测绘, 2020,3(1):58-59.
[5] Zhu J, Li P, Liu Y D. Experimental study of CSAMT in geothermal exploration under alpine frozen soil condition[J]. Geological and Mineral Surveying and Mapping, 2020,3(1):58-59.
[6] 王武, 赵林, 刘广岳, 等. 瞬变电磁法(TEM)在多年冻土区的应用研究[J]. 冰川冻土, 2011,33(1):156-163.
[6] Wang W, Zhao L, Liu G Y, et al. Geophysical mapping of permafrost using TEM[J]. Journal of Glaciology and Geocryology, 2011,33(1):156-163.
[7] Efremov V N. Delineating the thawed and ice-rich zones based on apparent electromagnetic resistivity of frozen ground[J]. Journal of Engineering of Heilongjiang University, 2014(3):262-265.
[8] 顾钟炜. 北美多年冻土调查中使用的几种电磁方法[J]. 冰川冻土, 1981,3(4):88-98.
[8] Gu Z W. Several electromagnetic methods used in permafrost surveys in North America[J]. Journal of Glaciology and Geocryology, 1981,3(4):88-98.
[9] Hoekstra P, Sellmann P V, Delaney A. Ground and Airborne Resistivity Surveys of Permafrost Near Fairbanks, Alaska[J]. Geophysics, 1975,40(4):641-656.
doi: 10.1190/1.1440555
[10] Hauck C, Guglielmin M, Isaksen K, et al. Applicability of frequency-domain and time-domain electromagnetic methods for mountain permafrost studies[J]. Permafrost & Periglacial Processes, 2010,12(1):39-52.
[11] Minsley B J, Abraham J D, Smith B D, et al. Airborne electromagnetic imaging of discontinuous permafrost[J]. Geophysical Research Letters, 2012,39(2):L02503.
[12] Pastick N J, Jorgenson M T, Wylie B K, et al. Extending airborne electromagnetic surveys for regional active layer and permafrost mapping with remote sensing and ancillary data, Yukon Flats Ecoregion, Central Alaska[J]. Permafrost and Periglacial Processes, 2013,24(3):184-199.
doi: 10.1002/ppp.1775
[13] Foley N, Tulaczyk S, Auken E, et al. Mapping geothermal heat flux using permafrost thickness constrained by airborne electromagnetic surveys on the western coast of Ross Island, Antarctica[J]. Exploration Geophysics, 2020,51(1):84-93.
doi: 10.1080/08123985.2019.1651618
[14] Key K, Siegfried M R. The feasibility of imaging subglacial hydrology beneath ice streams with ground-based electromagnetics[J]. Journal of Glaciology, 2017,63(241):755-771.
doi: 10.1017/jog.2017.36
[15] 杨思忠, 金会军, 于少鹏, 等. 中俄输油管道(漠河—大庆段)主要冻土环境问题探析[J]. 冰川冻土, 2010,32(2):358-366.
[15] Yang S Z, Jin H J, Yu S P, et al. An Investigation into the Permafrost Environment along the Chinese-Russian Oil Pipeline Route from Mohe to Daqing[J]. Journal of Glaciology and Geocryology, 2010,32(2):358-366.
[16] 文怀军, 鲁静, 尚潞君, 等. 青海聚乎更矿区侏罗纪含煤岩系层序地层研究[J]. 中国煤田地质, 2006,18(5):19-21.
[16] Wen H J, Lu J, Shang L J, et al. A sequence stratigraphic discussion of the Jurassic coal measures in the Juhugeng coalmine area in Qinghai province[J]. Coal Geology of China, 2006,18(5):19-21.
[17] 史健宗, 南卓铜, 石伟, 等. 青藏高原多年冻土本底调查信息系统[J]. 遥感技术与应用, 2010,25(5):725-732.
[17] Shi J Z, Nan Z T, Shi W, et al. An Information System for the Permafrost Background Investigation over the Qinghai-Tibet Plateau[J]. Remote Sensing Technology and Application, 2010,25(5):725-732.
[18] 肖继涛, 柳瑶, 胡照广, 等. 三种典型冻土的电阻率特性对比分析[J]. 森林工程, 2015,31(6):116-121.
[18] Xiao J T, Liu Y, Hu Z G, et al. Comparative analysis on resistivity characteristics of three typical permafrost[J]. Forest Engineering, 2015,31(6):116-121.
[19] 王显烈. 用测井曲线解释冻土层厚度[J]. 冰川冻土, 1991,13(1):91-94.
[19] Wang X L. Interpretating the permafrost thickness with logging curves[J]. Journal of Glaciology and Geocryology, 1991,13(1):91-94.
[20] 裴发根, 方慧, 杜炳锐, 等. AMT正演模拟及反演求导方法在探测冻土厚度中的应用——以青海木里地区多年冻土层为例[J]. 物探与化探, 2016,40(2):405-410.
[20] Pei F G, Fang H, Du B R, et al. The application of AMT forward modeling and inversion derivation method to detecting permafrost thickness: A case study of Muli permafrost area in Qinghai Province[J]. Geophysical and Geochemical Exploration, 2016,40(2):405-410.
[21] 姚大为, 王书民, 雷达, 等. CSAMT在祁连山永久冻土区天然气水合物调查中的应用[J]. 工程地球物理学报, 2013,10(2):132-137.
[21] Yao D W, Wang S M, Lei D, et al. Application of CSAMT to Qilian Mountain Permafrost Region Gas Hydrate Investigation[J]. Chinese Journal of Engineering Geophysics, 2013,10(2):132-137.
[22] 檀文慧, 钱卫, 巴晶, 等. 祁连山冻土区天然气水合物高密度电阻率法勘探应用[C]//中国地球科学联合学术年会, 2016.
[22] Tan W H, Qian W, Ba J, et al. Application of high-density resistivity method in gas hydrate exploration in qilian Mountain permafrost area[C]// Annual Meeting of Chinese Geoscience Union, 2016.
[23] 刘钊剡, 韩德波. 电阻率测深在探测冻土层融化深度方面的应用[J]. 工程勘察, 1996,24(2):64-66.
[23] Liu Z Y, Han D B. Application of resistivity sounding in detecting thawing depth of frozen soil[J]. Geotechnical Investigation & Surveying, 1996,24(2):64-66.
[24] 韩江涛, 刘国兴, 唐君辉. TEM拟地震成像法在漠河地区探测永久冻土层的应用[J]. 吉林大学学报:地球科学版, 2008,38(6):1060-1064.
[24] Han J T, Liu G X, Tang J H. Application of Transient Electromagnetic Pseudo-Seismic Interpretation Imaging Method to Explore Permafrost Strata in Mohe Region[J]. Journal of Jilin University:Earth Science Edition, 2008,38(6):1060-1064.
[25] 王生廷, 盛煜, 吴吉春, 等. 祁连山大通河源区冻土特征及变化趋势[J]. 冰川冻土, 2015,37(1):27-37.
[25] Wang S T, Sheng Y, Wu J C, et al. The characteristics and changing tendency of permafrost in the source regions of the Datong River, Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2015,37(1):27-37.
[26] 吴吉春, 盛煜, 于晖, 等. 祁连山中东部的冻土特征(Ⅰ):多年冻土分布[J]. 冰川冻土, 2007,29(3):418-425.
[26] Wu J C, Sheng Y, Yu H, et al. Permafrost in the Middle-East Section of Qilian Mountains (Ⅰ): Distribution of permafrost[J]. Journal of Glaciology and Geocryology, 2007,29(3):418-425.
[27] 吴吉春, 盛煜, 于晖, 等. 祁连山中东部的冻土特征(Ⅱ):多年冻土特征[J]. 冰川冻土, 2007,29(3):426-432.
[27] Wu J C, Sheng Y, Yu H, et al. Permafrost in the Middle-East Section of Qilian Mountains (Ⅱ): Characters of permafrost[J]. Journal of Glaciology and Geocryology, 2007,29(3):426-432.
[28] 殷长春. 航空电磁理论与勘查技术[M]. 北京: 科学出版社, 2018.
[28] Yin C C. Airborne electromagnetic theory and exploration technology [M]. Beijing: Science Press, 2018.
[29] 王卫平, 王守坦. 频率域航空电磁法及应用[M]. 北京: 地质出版社, 2011.
[29] Wang W P, Wang S T. Frequency domain airborne electromagnetic method and its applications [M]. Beijing: Geological Publishing House, 2011.
[30] 黄威. 时间域航空电磁系统仿真与关键技术研究[D]. 长春:吉林大学, 2016.
[30] Huang W. Time-domain Airborne Electromagnetic Simulation and Key Technologies[D]. Changchun: Jilin University, 2016.
[1] 黄威, 肖都, 贲放, 李军峰, 李飞, 胥值礼. 航空电磁时间域数据工频干扰研究与去除[J]. 物探与化探, 2023, 47(5): 1281-1287.
[2] 邢涛, 王垚, 李建慧. 基于B样条插值的瞬变电磁响应一维精确计算[J]. 物探与化探, 2023, 47(5): 1316-1325.
[3] 单希鹏, 谢汝宽, 余学中, 梁盛军, 李健. 频率域航空电磁法在雄安新区浅层(微)咸淡水调查中的应用[J]. 物探与化探, 2023, 47(2): 504-511.
[4] 杨志斌, 周亚龙, 张富贵, 张舜尧, 孙忠军. 中国陆域冻土区浅表烃类地球化学特征及其成因分析[J]. 物探与化探, 2022, 46(3): 628-636.
[5] 钟华, 唐新功. CSAMT一维正演可视化设计与激发极化效应[J]. 物探与化探, 2022, 46(2): 459-466.
[6] 李志强, 孙洋, 谭捍东, 张承客. 带地形的ZTEM倾子资料三维正反演研究[J]. 物探与化探, 2021, 45(3): 758-767.
[7] 李小伟, 臧永亮, 罗宁, 李名, 豆珂. 石油孔固井水泥环属性参数研究与伽马复测系数修正方法[J]. 物探与化探, 2021, 45(3): 800-808.
[8] 詹少全, 李爱勇, 王导丽, 郝红蕾, 王磊. 极寒环境中广域电磁法勘探技术研究[J]. 物探与化探, 2020, 44(5): 1019-1024.
[9] 任运通, 李貅, 齐彦福, 曹华科. 基于MPI+OpenMP的时间域航空电磁快速正演算法[J]. 物探与化探, 2020, 44(2): 290-299.
[10] 贲放, 黄威, 路宁, 韩飞, 郑红闪, 丁志强, 李军峰. 时间域航空电磁的天电噪声去除研究[J]. 物探与化探, 2020, 44(2): 388-393.
[11] 许泽善, 周江涛, 刘四新, 曾贤德. 三维步进频率探地雷达在沥青层厚度检测中的应用[J]. 物探与化探, 2019, 43(5): 1145-1150.
[12] 黄威, 贲放, 吴珊, 孙思源, 廖桂香, 西永在. 正交多项式法在航空电磁运动噪声去除中的应用[J]. 物探与化探, 2019, 43(4): 892-898.
[13] 孔栓栓, 韩自军, 张德龙, 乔柱, 温宏雷. 分频振幅检测 “亮点”型浅层气的方法研究及应用[J]. 物探与化探, 2019, 43(3): 626-633.
[14] 张富贵, 周亚龙, 张舜尧, 唐瑞玲, 王惠艳, 孙忠军. 热释汞:一种冻土区天然气水合物地球化学勘查新技术[J]. 物探与化探, 2019, 43(2): 329-337.
[15] 许智博, 谭捍东. ZTEM二维非线性共轭梯度反演研究[J]. 物探与化探, 2019, 43(2): 393-400.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com