Please wait a minute...
E-mail Alert Rss
 
物探与化探  2021, Vol. 45 Issue (6): 1606-1616    DOI: 10.11720/wtyht.2021.0274
  《重、磁方法理论及应用研究》专栏 本期目录 | 过刊浏览 | 高级检索 |
特立尼达盆地重力场特征及油气远景
邢锦程1,2(), 袁炳强1,2, 张春灌1,2, 冯旭亮1,2, 段瑞锋1,2, 薛健1,2, 贾洪杨1,2, 李想1,2
1.西安石油大学 地球科学与工程学院,陕西 西安 710065
2.陕西省油气成藏地质学重点实验室,陕西 西安 710065
Gravity characteristics and hydrocarbon prospect of Trinidad Basin
XING Jin-Cheng1,2(), YUAN Bing-Qiang1,2, ZHANG Chun-Guan1,2, FENG Xu-Liang1,2, DUAN Rui-Feng1,2, XUE Jian1,2, JIA Hong-Yang1,2, LI Xiang1,2
1. College of Geosciences and Engineering, Xi’an Shiyou University, Xi’an 710065,China
2. ShaanXi Key Lab of Petroleum Accumulation Geology, Xi’an 710065,China
全文: PDF(3489 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

特立尼达盆地位于南美洲委内瑞拉北部,加勒比海南缘,该盆地具有良好的油气资源前景。前人对盆地的构造演化、沉积特征等进行了研究,研究范围主要集中在盆地东南部海域。目前尚缺乏对整个盆地构造特征的研究,为了系统研究盆地的断裂分布和基底特征,预测盆地内油气远景区,为盆地进一步勘探工作提供依据,本文利用GETECH公司提供的船测和卫星重力资料,分析研究了该盆地的重力场特征,推断了盆地的断裂构造体系;利用相关分析及Parker法计算了盆地基底深度,并对盆地进行了构造单元划分及油气勘探远景区预测。研究结果表明,特立尼达盆地构造复杂,主要发育NE向和NW向2组断裂,NE向主要断裂控制着盆地的范围和盆地内地层的发育。盆地基底起伏较大,盆地内可以划分为东部次盆、北部次盆、中部隆起带、西部次盆和西北部凸起5个次级构造单元。盆地内东部次盆、北部次盆和西部次盆均为有利油气勘探区。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邢锦程
袁炳强
张春灌
冯旭亮
段瑞锋
薛健
贾洪杨
李想
关键词 重力异常断裂构造基底特征油气远景特立尼达盆地    
Abstract

Trinidad Basin, which is located in the northern part of Venezuela in South America and the southern margin of the Caribbean Sea has a good prospect for oil and gas resources. The formers have studied the tectonic evolution, sedimentary characteristics of the basin, the work was mainly focused on the southeastern basin, there is lack of research on the characteristics of the structure of the entire basin. In order to study systematically the distribution of faults and basement characteristics of the basin, predict the prospective areas of hydrocarbon, and provide a basis for further hydrocarbon exploration and development in the basin. This paper uses ship log gravity data and satellite gravity data provided by GETECH to analyze and study the characteristics of the gravity field of the basin, infer the fault structure system of the basin. With the constraints of the three existing seismic profiles, the three gravity profiles with the same position as the above seismic profiles were fitted, the basement depth of the basin is calculated combined with correlation analysis and Parker, the structural units and favorable hydrocarbon exploration areas of the basin are predicted. The results show that the structure of Trinidad basin is complex, there are mainly two groups of faults in NE direction and NW direction, the NE-oriented main faults control the scope of the basin and the development of stratum in the basin. The basement of the basin is undulating and can be divided into six structural units: the eastern subbasin, the northern subbasin, the central uplift belt, the central nappe belt, the western subbasin and the western uplift. The eastern sub-basin, the north sub-basin and the western sub-basin are favorable areas for hydrocarbon exploration.

Key wordsgravity anomaly    fault structure    basement characteristics    hydrocarbon prospect    Trinidad Basin
收稿日期: 2021-02-13      修回日期: 2021-05-19      出版日期: 2021-12-20
ZTFLH:  P631  
基金资助:西安石油大学创新基金项目(YCS20112012);中海石油(中国)有限公司项目“委内瑞拉北部近海地区微型重力资料及航磁资料处理与解释”(J2010CLKTFN002)
作者简介: 邢锦程(1991-),男,硕士研究生,主要从事地球物理研究工作。Email: xingjincheng0808@sina.com
引用本文:   
邢锦程, 袁炳强, 张春灌, 冯旭亮, 段瑞锋, 薛健, 贾洪杨, 李想. 特立尼达盆地重力场特征及油气远景[J]. 物探与化探, 2021, 45(6): 1606-1616.
XING Jin-Cheng, YUAN Bing-Qiang, ZHANG Chun-Guan, FENG Xu-Liang, DUAN Rui-Feng, XUE Jian, JIA Hong-Yang, LI Xiang. Gravity characteristics and hydrocarbon prospect of Trinidad Basin. Geophysical and Geochemical Exploration, 2021, 45(6): 1606-1616.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2021.0274      或      https://www.wutanyuhuatan.com/CN/Y2021/V45/I6/1606
Fig.1  特立尼达盆地构造位置(据IHS修改[1],其中红色框所围为盆地范围)
Fig.2  特立尼达盆地地层综合柱状图
Fig.3  特立尼达盆地及邻区布格重力异常
Fig.4  特立尼达盆地及邻区剩余重力异常
Fig.5  特立尼达盆地剩余异常与断裂分布
Fig.6  特立尼达盆地NVDR-THDR与断裂分布
Fig.7  特立尼达盆地斜导数与断裂分布
Fig.8  AA'剖面重力异常拟合结果(密度单位为103 kg/m3)
Fig.9  BB'剖面拟合结果(密度单位为103 kg/m3)
Fig.10  CC'剖面拟合结果=2.38 (密度单位为103 kg/m3)
Fig.11  基底深度计算分区示意
Fig.12  盆地基底深度反演结果(Parker法)及验证点位置
点号 地震解释深度/m Parker法反演深度/m 误差/m 误差率/%
A1 3894 7851 3957 50.4
A2 4108 6012 1905 31.7
A3 3638 3461 -177 5.1
A4 3650 1407 -2242 159.3
A5 2810 2154 -657 30.5
A6 2258 1966 -292 14.9
B1 7930 1009 -6921 685.7
B2 7969 1638 -6331 386.5
B3 8081 4062 -4018 98.9
B4 8137 4443 -3694 83.1
B5 8192 4588 -3604 78.5
B6 8232 4734 -3498 73.9
B7 8264 4888 -3376 69.1
B8 8356 5208 -3148 60.4
B9 8458 5217 -3241 62.1
B10 8555 5080 -3475 68.4
B11 8641 5050 -3591 71.1
B12 8718 5368 -3350 62.4
B13 8786 6046 -2739 45.3
C1 9054 7513 -1541 20.5
C2 9059 7493 -1566 20.9
C3 8876 8144 -732 9.0
C4 8813 8797 -16 0.2
C5 8834 9362 528 5.6
C6 8893 9860 967 9.8
C7 9086 10414 1329 12.8
Table 1  Parker法反演结果与地震解释深度对比
Fig.13  A区(a)和B区(b)剩余重力异常与地震解释深度回归分析结果
Fig.14  A、B区基底深度计算结果
点号 地震解释深度/m 相关分析法计算深度/m 误差/m 误差率/%
A1 6170 7851 1681 21.4
A2 6072 6012 -59 1.0
A3 3252 3461 209 6.0
A4 1350 1407 58 4.1
A5 2213 2154 -59 2.7
B1 783 1009 226 22.4
B2 1706 1638 -68 4.2
B3 3517 4062 546 13.4
B4 4037 4443 406 9.1
B5 4363 4588 226 4.9
B6 4497 4734 237 5.0
B7 4607 4888 281 5.8
B8 4744 5208 465 8.9
B9 4806 5217 411 7.9
B10 4916 5080 164 3.2
B11 5150 5050 -101 2.0
B12 5530 5368 -163 3.0
B13 6025 6046 21 0.4
Table 2  相关分析法计算结果与地震解释深度对比
Fig.15  特立尼达盆地基底深度
Fig.16  特立尼达盆地次级构造单元划分示意
Fig.17  特立尼达盆地基底深度计算结果与油气远景区叠合
[1] IHS. Energy and its affiliated and subsidiary companies[R]. Tobago basin, Trinidad and Tobago, Venezuela, Grenada, Barbados,Saint Vincent and the Grenadines, 2008.
[2] 袁炳强, 张春灌. 重磁勘探[M]. 北京: 石油工业出版社, 2015.
[2] Yuan B Q, Zhang C G. Gravity and magnetic prospect [M]. Beijing: Petroleum Industry Press, 2015.
[3] 刘银萍, 王祝文, 杜晓娟, 等. 边界识别技术及其在虎林盆地中的应用[J]. 吉林大学学报:地球科学版, 2012, 42(3):271-278.
[3] Liu Y P, Wang Z W, Du X J, et al. Boundary detection method and its application in Hulin Basin[J]. Journal of Jilin University:Earth Science Edition, 2012, 42(3):271-278.
[4] 杨斯涵. 重磁位场分离及边界识别方法研究[D]. 成都:成都理工大学, 2015.
[4] Yang S H. Study on the separation of gravity and magnetic potential field and Boundary recognition method[D]. Chengdu: Chengdu University of Technology, 2015.
[5] Flinch J F, Rambaran V, Ali W, et al. Chapter 17 Structure of the Gulf of paria pull-apart basin (Eastern Venezuela-Trinidad)[J]. Sedimentary Basins of the World, 1999, 4:477-484.
[6] Algar S T, Pindell J L. Structure and deformation history of the northern range of Trinidad and adjacent areas[J]. Tectonics, 1993, 12(4):814-829.
doi: 10.1029/93TC00673
[7] Garciacaro E, Mann P, Escalona A. Regional structure and tectonic history of the obliquely colliding Columbus foreland basin, offshore Trinidad and Venezuela[J]. Marine & Petroleum Geology, 2011, 28(1):126-148.
[8] Douglas W O. The inversion and interpretation of gravity anomalies[J]. Geophysics, 1974, 39(4):526-536.
doi: 10.1190/1.1440444
[9] Robert L P. Best bounds on density and depth from gravity data[J]. Geophysics, 1974, 39(5):644-649.
doi: 10.1190/1.1440454
[10] 柴玉璞, 贾继军. Parker公式的一系列推广及其在石油重力勘探中的应用前景[J]. 石油地球物理勘探, 1990, 25(3):321-332.
[10] Chai Y P, Jia J J. Parker’s fomulas in different forms and their applications to oil gravity survey[J]. Oil Geophysical Prospecting, 1990, 25(3):321-332.
[11] 冯娟, 孟小红, 陈召曦, 等. 三维密度界面的正反演研究和应用[J]. 地球物理学报, 2014, 57(1):287-294.
[11] Feng J, Meng X H, Chen Z X, et al. The investigation and application of three-dimensional density interface[J]. Chinese Journal of Geophysics, 2014, 57(1):287-294.
[12] 冯旭亮, 袁炳强, 李玉宏, 等. 渭河盆地基底三维变密度重力反演[J]. 石油地球物理勘探, 2019, 54(2):461-471,242.
[12] Feng X L, Yuan B Q, Li Y H, et al. Basement depth estimation based on gravity anomalies in Weihe Basin with 3D variable density contrast model[J]. Oil Geophysical Prospecting, 2019, 54(2):461-471,242.
[13] 肖鹏飞, 陈生昌, 孟令顺, 等. 高精度重力资料的密度界面反演[J]. 物探与化探, 2007, 31(1):29-33.
[13] Xiao P F, Chen S C, Meng L S, et al. The density interface inversion of high-precision gravity data[J]. Geophysical and Geochemical Exploration, 2007, 31(1):29-33.
[14] Yuan B, Song L, Hang L, et al. Gravity and magnetic field characteristics and hydrocarbon prospects of the Tobago Basin[J]. Geophysical Prospecting, 2017, 66(8):1586-1601.
doi: 10.1111/gpr.2018.66.issue-8
[15] 强洋洋, 袁炳强, 马杰, 等. 利用重力资料研究穆格莱德盆地南部新生界分布[J]. 西安石油大学学报:自然科学版, 2015, 30(3):18-23.
[15] Qiang Y Y, Yuan B Q, Ma J, et al. The study of the distribution of Cenozoic in the southern Muglad Basin based on gravity data[J]. Journal of Xi’an Shiyou University:Natural Science Edition, 2015, 30(3):18-23.
[16] 夏怡凡. SPSS统计分析精要与实例详解[M]. 北京: 电子工业出版社, 2010.
[16] Xia Y F. SPSS statistical analysis essentials and detailed explanation of examples[D]. Beijing: Publishing House of Electronics Industry, 2010.
[17] Robertson P, Burke K. Evolution of southern Caribbean Plate boundary, vicinity of Trinidad and Tobago[J]. Bulletin American Association of Petroleum Geologists, 1989, 73(4):490-509.
[1] 杨荣祥, 王万银, 蔡梦轲, 王丁丁, 罗新刚. 基于卫星重力异常的渤海盆地秦南凹陷及邻区构造格局研究[J]. 物探与化探, 2023, 47(3): 584-596.
[2] 王润生, 武斌, 张海瑞, 于嘉宾, 董彦龙, 郭国强, 康一鸣. 山东省临沂凸起东北缘重力场特征及大地构造单元边界讨论[J]. 物探与化探, 2023, 47(2): 279-289.
[3] 孙争, 王俊, 丁鹏, 谭鑫. 一种重力异常向上延拓高度最优化确定方法[J]. 物探与化探, 2023, 47(1): 162-170.
[4] 龙慧, 谢兴隆, 李凤哲, 任政委, 王春辉, 郭淑君. 二维地震和高密度电阻率测深揭示雄安新区浅部三维地质结构特征[J]. 物探与化探, 2022, 46(4): 808-815.
[5] 石泽玉, 张志厚, 刘鹏飞, 范祥泰. 重力及其梯度异常正演的Moving-footprint大尺度模型分解方法[J]. 物探与化探, 2022, 46(3): 576-584.
[6] 王蓉, 熊杰, 刘倩, 薛瑞洁. 基于深度神经网络的重力异常反演[J]. 物探与化探, 2022, 46(2): 451-458.
[7] 杨婧, 郭良辉. 重力异常曲化平的改进插值—迭代法[J]. 物探与化探, 2022, 46(1): 123-129.
[8] 冯旭亮, 魏泽坤. 基于界面反演增强的位场边缘识别方法[J]. 物探与化探, 2022, 46(1): 130-140.
[9] 高维强, 史朝洋, 张利明, 冯旭亮. 山区地形改正密度逐次回归选取方法[J]. 物探与化探, 2021, 45(6): 1530-1538.
[10] 王正科, 卢琳, 刘花婷. 一种实测重力异常区域场的消除方法[J]. 物探与化探, 2021, 45(6): 1569-1577.
[11] 陈青, 孙帅, 丁成艺, 黄小宇, 陈浩, 申鹏, 罗港, 魏耀聪. iTilt-Euler法在重力数据处理及断裂解释中的应用[J]. 物探与化探, 2021, 45(6): 1578-1587.
[12] 王佳龙, 邸兵叶, 张宝松, 赵东东. 音频大地电磁法在地热勘查中的应用——以福建省宁化县黄泥桥地区为例[J]. 物探与化探, 2021, 45(3): 576-582.
[13] 王冠鑫, 罗锋, 周锡华, 闫方. 航空重力弱信号提取的卡尔曼滤波方法研究[J]. 物探与化探, 2021, 45(1): 76-83.
[14] 王学发, 王万银, 马杰, 杨敏, 梁建设, 邱春光, 王丁丁, 纪晓琳, 刘金兰. 基于重力资料的马达加斯加岛及邻区盆地构造单元分布特征[J]. 物探与化探, 2020, 44(4): 928-937.
[15] 许文强, 袁炳强, 刘必良, 姚长利. 多种重磁位场边缘识别方法及在南黄海北部断裂构造识别中的应用研究[J]. 物探与化探, 2020, 44(4): 962-974.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com